Abstract:
A base station (103) assigns a set of mobile stations (101) to a group wherein the group will share a set of radio resources (770). A shared control channel information element (501) is sent to the group of mobile stations (101) and provides a bitmap having fields for group ordering (511), resource allocations (530), continuation resources (540) for HARQ, and an ordering pattern (513). If a mobile station requires retransmission it will access the resources indicated by the continuation resources field (540) in order to receive data. The HARQ blocks may be assigned to a mobile station based upon an index (601) which may correspond to the mobile station vocoder rate. Further, HARQ subgroups may be defined to associate subgroups of mobile stations with specific HARQ transmission opportunities on the super-frame and allocated by a rotating bitmap.
Abstract:
Methods (440, 500, 600) and corresponding systems (20, 24, 190) for scheduling uplink resources for communication with a base station (22) include receiving an uplink resource request (82, 204) for an uplink channel resource for a subscriber station (24). In response to the uplink resource request (82), generating an uplink resource grant message (206) for scheduling a selected uplink channel resource for the subscriber station (24); and inserting the uplink resource grant message into a shared traffic packet (158, 208) for transmission from the base station (22) on a shared traffic channel (56).
Abstract:
A process and apparatus for forming nanofibers from a spinning melt utilizing a high speed rotating distribution disc. The fibers can be collected into a uniform web for selective barrier end uses. Fibers with an average fiber diameter of less that 1,000 nm can be produced.
Abstract:
A base station (103) assigns a set of mobile stations (101) to a group wherein the group will share a set of radio resources. A shared control channel information element (501) is sent to the group of mobile stations (101) and provides a bitmap having fields for a control header (502), utilized resources (510), and first HARQ transmission assignments (530). HARQ subgroups may be defined to associate subgroups of mobile stations with specific HARQ transmission opportunities on the super-frame. The mobile stations (101) are assigned resources in a persistent manner in each long frame of a super-frame for which a first HARQ transmission opportunity is defined.
Abstract:
A process and apparatus for forming nanofibers from a spinning melt utilizing a high speed rotating distribution disc. The fibers can be collected into a uniform web for selective barrier end uses. Fibers with an average fiber diameter of less that 1,000 nm can be produced.
Abstract:
A base station (103) assigns a set of mobile stations (101) to a group wherein the group will share a set of radio resources (710). A shared control channel information element (501) is sent to the group of mobile stations (101) and provides a bitmap having fields for group ordering (511), resource allocations (530), failure handling resources (540), and an ordering pattern (513). If a mobile station fails to decode the shared control channel information element (501) it will access the failure handling resources in order to receive data. The failure handling channel may be persistent in some embodiments, or may be released after the mobile station is once again able to decode the shared control channel information element (501) and thereby share in the shared resource pool allocated to its mobile station group.
Abstract:
A base station (103) assigns a set of mobile stations (101) to a group wherein the group will share a set of radio resources. A shared control channel information element (501) is sent to the group of mobile stations (101) and provides a bitmap having fields for a control header (502), utilized resources (510), and first HARQ transmission assignments (530). HARQ subgroups may be defined to associate subgroups of mobile stations with specific HARQ transmission opportunities on the super-frame. The mobile stations (101) are assigned resources in a persistent manner in each long frame of a super-frame for which a first HARQ transmission opportunity is defined.
Abstract:
According to one embodiment, a memory architecture implemented method is provided, where the memory architecture includes a logic chip and one or more memory chips on a single die, and where the method comprises: reading values of data from the one or more memory chips to the logic chip, where the one or more memory chips and the logic chip are on a single die; modifying, via the logic chip on the single die, the values of data; and writing, from the logic chip to the one or more memory chips, the modified values of data.
Abstract:
A base station (103) assigns a set of mobile stations (101) to a group wherein the group will share a set of radio resources (710). A shared control channel information element (501) is sent to the group of mobile stations (101) and provides a bitmap having fields for group ordering (511), resource allocations (530), failure handling resources (540), and an ordering pattern (513). If a mobile station fails to decode the shared control channel information element (501) it will access the failure handling resources in order to receive data. The failure handling channel may be persistent in some embodiments, or may be released after the mobile station is once again able to decode the shared control channel information element (501) and thereby share in the shared resource pool allocated to its mobile station group.
Abstract:
Methods (440, 500, 600) and corresponding systems (20, 24, 190) for scheduling uplink resources for communication with a base station (22) include receiving an uplink resource request (82, 204) for an uplink channel resource for a subscriber station (24). In response to the uplink resource request (82), generating an uplink resource grant message (206) for scheduling a selected uplink channel resource for the subscriber station (24); and inserting the uplink resource grant message into a shared traffic packet (158, 208) for transmission from the base station (22) on a shared traffic channel (56).