Abstract:
The present invention relates to a method in a receiving node and a sending node of a wireless communications system for enabling and disabling integrity protection of at least one data radio bearer between the sending node and the receiving node. The method in the receiving node comprises, following a successful connection re-establishment between the sending node and the receiving node, receiving (710) a connection reconfiguration message from the sending node, the connection reconfiguration message comprising an indicator indicating which ones of the at least one data radio bearers that shall have enabled integrity protection. It also comprises enabling (720) integrity protection of packets on the at least one data radio bearer indicated by the indicator, and disabling (730) integrity protection of packets on the rest of the at least one data radio bearers.
Abstract:
In accordance with one embodiment of the present disclosure, a method of operating a relay node includes receiving information, at the relay node, information identifying a plurality of subfranies. The subfranies represent time periods during which a base station may grant the relay node permission to transmit to the base station on a first frequency. The method also involves selecting one of the identified subframes to be used for a transmission between the relay node and a wireless terminal on the first frequency and transmits to the wireless terminal a scheduling grant granting the wireless terminal permission to transmit information on the first frequency during the selected subframe.
Abstract:
The present invention relates to a method in a base station (14, 400) and a base station (14, 400) for predicting a frequency dependent Channel State Information, CSI for scheduling and link adaptation of resource blocks of an operating bandwidth, based on frequency band CSI information related to at least one UE, the method comprising the steps receiving a wideband CSI related to UE (step 302), receiving a UE-selected subband CSI for a bandwidth part (step 302), calculating the difference: the UE-selected subband CSI for the bandwidth part minus a non UE-selected SB CSI the wideband CSI (steps 314, 328, 338), and updating a non UE-selected SB CSI for at least the bandwidth part, based on the calculated difference (steps 318, 332, 342). A faster more reliable prediction method based on UE-selected SB CSI values, is hereby achieved.