Abstract:
A method of characterizing and enhancing the pixels in an image, which is captured at all lighting conditions. The method enable dynamically enhancement of images captured at extremely low lighting conditions. Each pixel of the image, represented by I SUB (x, y) where x is the horizontal axis coordinate value and y is the vertical axis coordinate value, contains three color-components. Each pixel is characterized by defining a relationship between the three color-components of that pixel in its initial state. A nonlinear expansion function, which adaptively adjusts the expansion rate with respect to the statistical property of the original image, is used for enhancing the brightness of the image so that the poorly lighted pixels are enhanced in intensity more as compared to the amount of enhancement for the brighter pixels. The color property of each pixel in the enhanced image is then restored using the characteristic features previously defined by the relationship of the color components. This procedure provides an enhanced image, which is natural in its appearance and has sharp visibility to human observation. In addition, this new technique is fast enough to provide a real time enhancement of images from a video stream.
Abstract:
An intracellular electro-manipulation apparatus for delivery an electric field pulse to a target of one or more biological cells is provided. The apparatus includes a pulse generator that generates an ultrashort electric field pulse, and a pulse delivery system that directs the ultrashort electric field pulse to the target. The apparatus can include a reflected-signal impeder connected between the pulse generator and the pulse delivery system to impede reflection of a signal to the pulse generator when impedance mismatching between the pulse delivery system and pulse generator occurs. Alternatively, or additionally, the apparatus can include a current limiter connected between the pulse generator and the pulse delivery system to limit current between the pulse generator and the pulse delivery system when a high- conductivity condition occurs in the target.
Abstract:
A method and apparatus for determining the concentration of a constituent in a fluid by directing a beam of light into the fluid and sensing the intensity of components of the light emerging from the fluid at various wavelengths. The light emerging from the fluid can be light that has been attenuated by absorption or induced by fluorescent radiation. The effect of scattering on the light is minimized by normalizing the component intensities, which are then applied to an algorithm incorporating weighting factors that weighs the influence that the intensity at each wavelength has on the determination of the concentration of the constituent for which the algorithm was developed. The algorithm is developed by a regression analysis based upon a plurality of known mixtures containing various concentrations of the constituent of interest.
Abstract:
A method for intracellular electro-manipulation is provided. The method includes applying one or more ultrashort electric field pulse to target cells. The ultrashort electric field pulses have sufficient amplitude and duration to modify subcellular structures in the target cells and do not exceed the breakdown field of the medium containing the target cells. The amplitude and duration of the ultrashort electric field pulse are typically insufficient to substantially alter permeability of the surface membranes of the target cells, e.g., by irreversibly disrupting the cell surface membranes. An apparatus for intracellular electro-manipulation is also provided. The apparatus includes a pulse generator capable of producing an ultrashort electric pulse output and a delivery system capable of directing the electric pulse output to target cells.
Abstract:
A new image enhancement process based on an integrated neighborhood dependent nonlinear approach for color images captured in various environments such extremely low lighting (fig. 1 element 2. fog (fig. 1 element 3), or underwater (fig. 1 element 4). The new process is a combination of two independent processes: luminance enhancement and contrast enhancement. The luminance enhancement, also regarded as a process of dynamic range compression, is essentially an intensity transformation based on a specifically designed nonlinear transfer function, which can largely increase the luminance for dark regions of the image but only slightly change the luminance for the bright regions of the image. The contrast enhancement transforms each pixel's intensity based on the relationship between the pixel and its surrounding pixels. The output of the contrast enhancement is a power function of the luminance of the input image. The exponent of the power function is determined bv the information obtained in the original luminance image, which is the ratio between the result of neighborhood averaging and the luminance of the center pixel. After contrast enhancement, the luminance image is converted back to a color image through a linear color restoration process with color saturation and hue adjustment.
Abstract:
A method and apparatus for determining the concentration of a constituent in a fluid by directing a beam of light into the fluid and sensing the intensity of components of the light emerging from the fluid at various wavelengths. The light emerging from the fluid can be light that has been attenuated by absorption or induced by fluorescent radiation. The effect of scattering on the light is minimized by normalizing the component intensities, which are then applied to an algorithm incorporating weighting factors that weighs the influence that the intensity at each wavelength has on the determination of the concentration of the constituent for which the algorithm was developed. The algorithm is developed by a regression analysis based upon a plurality of known mixtures containing various concentrations of the constituent of interest.
Abstract:
Un aparato para destruir células diana que comprende: (i) un generador de pulso; (ii) un agrupamiento de electrodos, el agrupamiento de electrodos que comprende al menos un par de agujas capaces de ser insertadas en tejidos in vivo, conteniendo el tejido las células diana, y ser capaces de dirigir los pulsos eléctricos ultracortos a dichas células diana in vivo; y (iii) un sistema de distribución adaptado para comunicar uno o más pulsos eléctricos ultracortos desde el generador de pulsos al agrupamiento de electrodos, caracterizado en que el generador de pulsos está configurado para producir dicho uno o más pulsos eléctricos ultracortos que tienen una duración de pulso de no más de 1 microsegundo y una intensidad de campo eléctrico mayor de 10 kV/cm.
Abstract:
A method for intracellular electro-manipulation is provided. The method includes applying at least one ultrashort electric field pulse to target cells. The ultrashort electric field pulse has sufficient amplitude and duration to modify subcellular structures in the target cells and does not exceed the breakdown field of the medium containing the target cells. The amplitude and duration of the ultrashort electric field pulse are typically insufficient to substantially alter permeability of the surface membranes of the target cells, e.g., by irreversibly disrupting the cell surface membranes. An apparatus for intracellular electro-manipulation is also provided. The apparatus includes a pulse generator capable of producing an ultrashort electric pulse output and a delivery system capable of directing the electric pulse output to target cells.
Abstract:
A method for intracellular electro-manipulation is provided. The method includes applying at least one ultrashort electric field pulse to target cells. The ultrashort electric field pulse has sufficient amplitude and duration to modify subcellular structures in the target cells and does not exceed the breakdown field of the medium containing the target cells. The amplitude and duration of the ultrashort electric field pulse are typically insufficient to substantially alter permeability of the surface membranes of the target cells, e.g., by irreversibly disrupting the cell surface membranes. An apparatus for intracellular electro-manipulation is also provided. The apparatus includes a pulse generator capable of producing an ultrashort electric pulse output and a delivery system capable of directing the electric pulse output to target cells.
Abstract:
A method and apparatus for determining the concentration of a constituent in a fluid by directing a beam of light into the fluid and sensing the intensity of components of the light emerging from the fluid at various wavelengths. The light emerging from the fluid can be light that has been attenuated by absorption or induced by fluorescent radiation. The effect of scattering on the light is minimized by normalizing the component intensities, which are then applied to an algorithm incorporating weighting factors that weighs the influence that the intensity at each wavelength has on the determination of the concentration of the constituent for which the algorithm was developed. The algorithm is developed by a regression analysis based upon a plurality of known mixtures containing various concentrations of the constituent of interest.