Abstract:
The present subject matter relates to methods and compositions for identifying soybean plants that having increased Phytophthora root and stem rot resistance. The methods use molecular markers to identify and to select plants with increased Phytophthora root and stem rot resistance or to identify and deselect plants with decreased Phytophthora root and stem rot resistance. Soybean plants generated by the methods disclosed are also a feature of the present subject matter.
Abstract:
High yield sesame plants and parts thereof are provided. Phenotypic and genotypic analysis of many sesame varieties was performed to derive markers for phenotypic traits that contribute to high yield, and a breeding simulation was used to identify the most common and most stable markers. Examples for such phenotypic traits include the number of capsules per leaf axil, the capsule length, the height to first capsule and the number of lateral shoots. Following verification of trait stability over several generations, markers and marker cassettes were defined as being uniquely present in the developed sesame lines. The resulting high yield, shatter-resistant sesame lines can be used to increase sesame yield for its various uses.
Abstract:
High yield sesame plants and parts thereof are provided. Phenotypic and genotypic analysis of many sesame varieties was performed to derive markers for phenotypic traits that contribute to high yield, and a breeding simulation was used to identify the most common and most stable markers. Examples for such phenotypic traits include the number of capsules per leaf axil, the capsule length, the height to first capsule and the number of lateral shoots. Following verification of trait stability over several generations, markers and marker cassettes were defined as being uniquely present in the developed sesame lines. The resulting high yield, shatter-resistant sesame lines can be used to increase sesame yield for its various uses.
Abstract:
The present invention provides polynucleotides and related polypeptides of the enzyme APAO isolated from Exophiala spinifera. Additionally, the polynucleotide encoding for the APAO enzyme can be used to transform plant cells normally susceptible to Fusarium or other toxin-producing fungus infection. Plants can be regenerated from the transformed plant cells. Additionally, the present invention provides for expressing both APAO and a fumonisin esterase in a transgenic plant. In this way, a transgenic plant can be produced with the capability of degrading fumonisin, as well as with the capability of producing the degrading enzymes. In addition, the present invention provides methods for producing the APAO enzyme in both prokaryotic and non-plant eukaryotic systems.
Abstract:
The present invention relates to engineering plants to express higher levels than endogenous amounts of terpenoids, such as farnesene. Plants that can be so engineered include those with large carbon stores, such as sweet sorghum and sugar cane.
Abstract:
The present invention provides polynucleotides and related polypeptides of the enzyme APAO isolated from Exophiala spinifera and Rhinocladiella atrovirens. The polynucleotides may be mutated to remove glycosylation sites and cysteine residues. Additionally, the present invention provides recombinant expression cassettes, host cells, transgenic plants, and transgenic seed. The present invention also provides for polynucleotides containing both APAO and a fumonisin esterase. In addition, the present invention provides methods for producing the APAO enzyme in both prokaryotic and eukaryotic systems, methods for detecting fumonisins, and methods for identifying transformed plant cells. Methods for degrading fungal toxins in plants, grain, grain processing, silage, food crops and in animal feed are also disclosed.