Abstract:
Embodiments of an RFIC and methods for same and mobile terminals can internally reduce an input voltage to provide a prescribed voltage to a radio frequency transceiver. Embodiments of an RFIC can have a high efficiency and/or a low noise. In one embodiment, a device can include a PMIC and an RFIC. The RFIC can include an RF transceiver to carry out an RF transmission and an RF reception, a DC-DC converter to lower a voltage provided by the PMIC, and an LDO regulator to regulate the lowered voltage to a fixed voltage used by the RF transceiver.
Abstract:
The present invention relates to an apparatus and a method for measuring an IQ imbalance. One embodiment according to the present general inventive concept can provide a method for measuring a Tx IQ imbalance generated in an IQ up-conversion mixer and an Rx IQ imbalance generated in an IQ down-conversion mixer, that includes measuring a first IQ imbalance corresponding to a first combination of the Rx IQ imbalance with the Tx IQ imbalance, measuring a second IQ imbalance corresponding to a second combination of the the Rx IQ imbalance with the Tx IQ imbalance and obtaining the Tx IQ imbalance and the Rx IQ imbalance from the first IQ imbalance and the second IQ imbalance.
Abstract:
The application discloses embodiments of methods and/or systems for compensating a transmission carrier leakage of an up-conversion mixer, a tranceiving circuit or apparatus embodying the same. One embodiment of a method can include detecting an I channel DC offset DCI 0 and a Q channel DC offset DCQ 0 generated by a reception carrier leakage from an output of a down-conversion mixer, detecting an I channel DC offset DCI and a Q channel DC offset DCQ from the output of the down conversion mixer while varying a compensation parameter being inputted to an up conversion mixer that has its output coupled to an input of the down-conversion mixer to determine the compensation parameter that can reduce or minimize a transmission carrier leakage. A combination of a transmission baseband signal and the determined compensation parameter can be transmitted using the up-conversion mixer and an antenna to compensate for the transmission carrier leakage.
Abstract:
A system and method for filtering signals in a communications system reduces hardware and chip size requirements by selectively connecting a filter along transmitter and receiver paths of a transceiver. In operation, a controller generated signals for connecting the filter along the transmitter path when the transceiver is in transmitter mode and for connecting the filter along the receiver path when the transmitter is in receiver mode. The controller then generates additional signals for setting one or more parameters of the filter based on the path connected, or put differently based on the operational mode of the transceiver. In a variation, the controller sets the parameters of additional elements coupled to the filter as a way of further controlling processing of the transmitter and receiver signals. The system and method are particularly well suited to controlling the filtering of signals at the front-end of the transceiver having a direct-conversion architecture and in general ones performing time-multiplexing applications.
Abstract:
Embodiments of an RFIC and methods for same and mobile terminals can internally reduce an input voltage to provide a prescribed voltage to a radio frequency transceiver. Embodiments of an RFIC can have a high efficiency and/or a low noise. In one embodiment, a device can include a PMIC and an RFIC. The RFIC can include an RF transceiver to carry out an RF transmission and an RF reception, a DC-DC converter to lower a voltage provided by the PMIC, and an LDO regulator to regulate the lowered voltage to a fixed voltage used by the RF transceiver.
Abstract:
Embodiments of a clock generator and a clock generating method can use a delay locked loop (DLL) In one embodiment, a clock generator can include a first oscillator (XoI) to generate a first clock signal having a frequency corresponding to a control signal, a delay locked loop (100) to generate a second clock signal having a frequency higher than that of the first clock signal, a frequency divider (200) to receive the second clock signal to generate a third clock signal having a frequency lower than that of the second cloc signal, a second oscillator (Xo2) to generate a fourth clock signal and a phase frequency detector (300) to generate the control signal corresponding to a phase difference and/or a frequency difference between the third clock signal and the fourth clock signal
Abstract:
The application discloses system and method embodiments related to a frequency synthesizer. Embodiments of a frequency synthesizer can have a low phase noise and a narrow channel spacing. Embodiments of a frequency synthesizer can use two phase locked loops. One embodiment of a frequency synthesizer can include a reference frequency oscillator for outputting a signal having a reference frequency, an integer-N phase locked loop to generate a first output frequency signal based on the reference frequency signal, a fractional-N phase locked loop to generate a second output frequency based on the reference frequency signal and a circuit to generate an output frequency signal by combining the first output frequency and die second output frequency.
Abstract:
Embodiments of methods, transceiver circuits, and systems can compensate an IQ mismatch (e.g., Tx or Rx) or a carrier leakage using a plurality of local oscillators. One embodiment of a transceiver can include a first up-conversion IQ mixer, a second up-conversion IQ mixer, a first down-conversion IQ mixer with an input to receive an output of the second up-conversion IQ mixer, a second down- conversion IQ mixer with an input to receive an output of the first up-conversion IQ mixer, a first local oscillator to generate a first IQ LO signal for the first up- conversion IQ mixer and the first down-conversion IQ mixer, and a second local oscillator to generate a second IQ LO signal for the second up-conversion IQ mixer and the second down-conversion IQ mixer.
Abstract:
Embodiments of methods and apparatuses can compensate gain ripple and/or group delay characteristics of at least one filter, a receiving circuit embodying a filter, or a communication system having a wireless terminal embodying the receiving circuit.
Abstract:
A variable-gain amplifier circuit uses a pair of single-ended operational amplifiers (100, 110) to amplify complementary portions of a differential input signal (IN, INB). By using two single-ended amplifiers (100, 110) instead of a single differential amplifier, linearity is significantly improved. In addition, common mode feedback circuitry is eliminated along with harmonic distortion and other forms of noise which tend to negative affect the quality of the signal output from the circuit.