Abstract:
A radial cylinder hydraulic motor comprises: oscillating hydraulic cylinders (1) driven to oscillate by means of an eccentric crankpin (2) formed on the motor shaft (3), the oscillating cylinder liners (4) being provided with trunnions (5) for oscillation about a parallel axis (C) to the axis (A) of rotation of the motor shaft which are coupled oscillably to the motor crankcase (6); reciprocating pistons (7) within said liners which are provided with a runner (8) for sliding over the outer surface (9) of said eccentric crankpin; and a rotary disk distributor (10, 23) coupled to the motor shaft for synchronized rotation therewith, adapted to place the conduits (12, 13) of the hydraulic circuit in fluid communication with the conduits (14) of the respective cylinders during the delivery and discharge strokes via ports of slanted or through-going configuration; and advantageously includes the rotating disk of the distributor formed with a connection/supply means (38, 40) to the passageway between one face (27) and the inner wall of the distributor cover (41) incorporating a seal (28), with pressurized fluid in the area outside the seal. In another embodiment, it has the trunnions (5) formed with trough-like channels (30) in their outer surface (31), at the area of rubbing contact with the trunnion journals, into a branched layout (30) having a roughly trapezoidal projected shape, the channels in the branched layout being supplied pressurized fluid through one or more supply channels (32) from within the cylinder.
Abstract:
A radial cylinder hydraulic motor having continuously variable displacement capabilities comprises: oscillating hydraulic cylinders (1) which are driven to oscillate through an eccentric crankpin (2) formed on the motor shaft (3) and carrying a radially movable ring (14) adapted to be shifted along the radial direction of the crankpin by actuation of opposed counteracting hydraulic cylinders (5, 6, 7) housed within the crankpin; a hydraulic control circuit for controlling and adjusting the positions of said counteracting hydraulic cylinders in a continuous manner; an electronic control circuit adapted to control the hydraulic control circuit and process signals from at least one position sensor arranged to detect the positions of said oscillating cylinders; a rotary joint (8) for hydraulic conduits (9, 10) through which said counteracting hydraulic cylinders are controlled and adjusted; wherein the sensor (45) is an angular position sensor placed close to the oscillation axis (C) of at least one oscillating cylinder (1) to measure, based upon changes in the signal, an angular position currently entered by the cylinder liner during the swing.