Abstract:
A system (100) for enabling study of image data, comprising: —a user interface subsystem (120) for i) receiving navigation commands (022) from a user, and ii) displaying different views (400) of the image data (042) in response to the navigation commands for enabling the user to navigate through the image data; —a function execution subsystem (160) for executing individual ones of a plurality of system functions (500) to support the user in the study of the image data; and—a pattern analysis subsystem (140) for: j) obtaining, from the user interface subsystem, data (022) indicative of a display sequence of the different views during the navigating through the image data, jj) analyzing the data to determine a navigation pattern (631) of the user, and jjj) based on the navigation pattern, selecting one of the plurality of system functions for execution by the function execution subsystem.
Abstract:
A method for automated segmentation of a blood vessel of a head and neck of a subject in a medical image, the method comprising: identifying the location of anatomical landmarks in the medical image; identifying regions of interest in the medical image based on the landmarks; segmenting segments of blood vessels in the medical image; classifying at least one of the segments as defining the blood vessel based on its position relative to the landmarks within the regions of interest to create a classified blood vessel; identifying a starting seed for the blood vessel from the classified blood vessel; identifying an ending seed for the blood vessel from the classified blood vessel; segmenting the blood vessel between the starting seed and the ending seed; and defining a path between the starting seed and the ending seed.
Abstract:
A system (100) for enabling study of image data, comprising:—a user interface subsystem (120) for i) receiving navigation commands (022) from a user, and ii) displaying different views (400) of the image data (042) in response to the navigation commands for enabling the user to navigate through the image data;—a function execution subsystem (160) for executing individual ones of a plurality of system functions (500) to support the user in the study of the image data; and—a pattern analysis subsystem (140) for: j) obtaining, from the user interface subsystem, data (022) indicative of a display sequence of the different views during the navigating through the image data, jj) analyzing the data to determine a navigation pattern (631) of the user, and jjj) based on the navigation pattern, selecting one of the plurality of system functions for execution by the function execution subsystem.
Abstract:
A radiation detection system comprising: a plurality of photodetector arrays (110), each comprising a plurality of substantially coplanar photodetector elements (108); a scintillator (102), at least a portion of which is associated with each photodetector element; anda light guide (106) connecting each photodetector element with its associated portion of the scintillator; wherein surfaces of the portions of the scintillator associated with the photodetector elements in each photodetector array comprise a substantially coplanar surface, whose plane is not parallel to the plane of said photodetector elements.
Abstract:
CT scanner is disclosed for providing an image of a region comprising : at least one X-ray cone beam for illuminating mthe region with X-rays; a plurality of rows of X-ray detectors that generate signals responsive to line attenuation of X-rays from the at least one X-ray source that pass through the region; a controller that controlsproviding an image of a region comprising: at least one X-ray cone beam for illuminating the region with X-rays; a plurality of rows of X-ray detectors that generate signals responsive to line attenuation of X-rays from the at least one X-ray source that pass through the region; a controller that controls the at least one X-ray cone beam to acquire line attenuation data for the region for different view angles of the region; and a processor that receives the signals and: a) determines low spatial frequency components of the image from the data; b) generates a first spatial image of the region from the low frequency components; c) determines high spatial frequency components of the image from the data; d) generates a second spatial image of the region from the high frequency components; and e) combines the first and second images to generate the CT image.
Abstract:
Computerized tomography apparatus for reconstructing attenuation values within a volume comprising: an x-ray source situated operative to rotate about said volume, in a rotation plane, while irradiating at least a portion of the volume; a plurality of rows of x-ray detectors illuminated by said rotating x-ray source situated on an opposite side of the volume; a patient support operative to move a patient through a space between the source and detectors at an angle to the normal to the rotation plane, while the x-ray detectors illuminate the detectors; and a controller operative to compute the angle based on at least one of a radius R of said rotation, a radius r of said volume and a helix pitch, m, defined as a distance the patient support moves during a single rotation of the x-ray source.
Abstract:
A method for determining a modulation function for modulating intensity of X-rays provided by an X-ray source of a CT-system for CT-imaging a slice of a region a person's body, the method comprising: acquiring X-ray attenuation data for a first substantially anterior-posterior or lateral view of the slice; determining a first maximum X-ray attenuation from the attenuation data; determining a length of a projection of the slice along an axis in the plane of the slice that is substantially orthogonal to the view angle using the attenuation data; determining a second maximum X-ray attenuation for a second view orthogonal to the first view based on the determined length; and using the first and second attenuation maxima to determine the modulation function.
Abstract:
A system (100) for enabling study of image data, comprising: - a user interface subsystem (120) for i) receiving navigation commands (022) from a user, and ii) displaying different views (400) of the image data (042) in response to the navigation commands for enabling the user to navigate through the image data; - a function execution subsystem (160) for executing individual ones of a plurality of system functions (500) to support the user in the study of the image data; and - a pattern analysis subsystem (140) for: j) obtaining, from the user interface subsystem, data (022) indicative of a display sequence of the different views during the navigating through the image data, jj) analyzing the data to determine a navigation pattern (631) of the user, and jjj) based on the navigation pattern, selecting one of the plurality of system functions for execution by the function execution subsystem.
Abstract:
A system (100) for enabling study of image data, comprising: - a user interface subsystem (120) for i) receiving navigation commands (022) from a user, and ii) displaying different views (400) of the image data (042) in response to the navigation commands for enabling the user to navigate through the image data; - a function execution subsystem (160) for executing individual ones of a plurality of system functions (500) to support the user in the study of the image data; and - a pattern analysis subsystem (140) for: j) obtaining, from the user interface subsystem, data (022) indicative of a display sequence of the different views during the navigating through the image data, jj) analyzing the data to determine a navigation pattern (631) of the user, and jjj) based on the navigation pattern, selecting one of the plurality of system functions for execution by the function execution subsystem.
Abstract:
A CT detector-module for detecting X-rays comprising: a matrix of photosensors, each of which generates signals responsive to photons incident thereon; a scintillator mounted over the matrix that converts X-rays incident on the scintillator to photons to which the photosensors are sensitive; an anti-scatter collimator mounted over the scintillator; and electronic circuitry located in close proximity to the photosensors to which each of the photosensors is connected for processing the signals generated by the photosensors; wherein parts of the module are formed from an absorbing material having a high X-ray absorption coefficient and shield the circuitry from radiation.