Abstract:
Disclosed is a low-phosphorous lubricant produced by a process comprising forming a lubricant additive by reacting metal halide and organophosphate together to form a reaction mixture, the metal halide participating as a reactant, and adding at least a portion of the reaction mixture to a lubricant base comprising from about 0.01 weight percent phosphorous to about 0.1 weight percent phosphorous.
Abstract:
A lubricant additive produced by the process comprising mixing a metal halide with an organophosphate, the metal halide participating as a reactant and reacting the metal halide and the organophosphate to produce a reaction mixture comprising the lubricant additive. Also disclosed is a lubricant produced by the process comprising forming a lubricant additive by reacting metal halide and organophosphate together to form a reaction mixture, the metal halide participating as a reactant, and adding at least a portion of the reaction mixture to a lubricant base.
Abstract:
A additive is incorporated into a filter for use with engine oil such that when the engine oil passes through the filter media the engine oil, or components of the engine oil react with the additive inside the filter to produce compounds that increase the anti-wear and/or lubricating properties of the engine oil. The filter additive may be formed by an organic or metal fluoride material.
Abstract:
Disclosed are methods for preparing lubricant additives and lubricants by reacting together organophosphate compounds and fluorine compounds, the fluorine compound participating in the reaction as a reactant. The supernatants and precipitates formed during the reaction then may be used as lubricant additives.
Abstract:
A lubricant additive produced by the process comprising mixing an organophosphate and an organofluorine compound and reacting the organophosphate and the organofluorine compound to produce a reaction mixture comprising the lubricant additive. Also, a lubricant produced by the process comprising forming a reaction mixture by reacting an organophosphate and an organofluorine and adding at least a portion of the reaction mixture to a lubricant base.
Abstract:
A method for forming in-situ a fluorinated organic compound or polymer film from the friction-induced reaction of an organic material, such as zinc dialkyldithiophosphate (ZDDP), and a fluoridated material, such as iron fluoride (FeF 3 ) on or in proximity to a wear surface substrate. Also disclosed is a method for producing a lubricated wear surface by frictionally reacting an organic material and a fluoridated material near a wear surface, where the reaction product is a fluorinated organic compound bonded to the wear surface.
Abstract:
A lubricant additive produced by the process comprising mixing a metal halide with an organophosphate, the metal halide participating as a reactant and reacting the metal halide and the organophosphate to produce a reaction mixture comprising the lubricant additive. Also disclosed is a lubricant produced by the process comprising forming a lubricant additive by reacting metal halide and organophosphate together to form a reaction mixture, the metal halide participating as a reactant, and adding at least a portion of the reaction mixture to a lubricant base.
Abstract:
A lubricant additive produced by the process comprising mixing an organophosphate and an organofluorine compound and reacting the organophosphate and the organofluorine compound to produce a reaction mixture comprising the lubricant additive. Also, a lubricant produced by the process comprising forming a reaction mixture by reacting an organophosphate and an organofluorine and adding at least a portion of the reaction mixture to a lubricant base.
Abstract:
A lubricant additive produced by the process comprising mixing a metal halide with an organophosphate, the metal halide participating as a reactant and reacting the metal halide and the organophosphate to produce a reaction mixture comprising the lubricant additive. Also disclosed is a lubricant produced by the process comprising forming a lubricant additive by reacting metal halide and organophosphate together to form a reaction mixture, the metal halide participating as a reactant, and adding at least a portion of the reaction mixture to a lubricant base.
Abstract:
A lubricant additive produced by the process comprising mixing an organophosphate and an organofluorine compound and reacting the organophosphate and the organofluorine compound to produce a reaction mixture comprising the lubricant additive. Also, a lubricant produced by the process comprising forming a reaction mixture by reacting an organophosphate and an organofluorine and adding at least a portion of the reaction mixture to a lubricant base.