Abstract:
The invention belongs to the field of devices and processes for measurement of electrical quantities and more precisely refers to measuring sensors and the procedures for measuring bus bar current with skin effect correction. The invention in the subject solves the problem of designing a measuring magnetic current sensor, the signal-primary current ratio of which is frequency independent in a relatively wide frequency range. This is achieved so that the invention in the subject explains the measuring procedures and the embodiments of the measuring sensor with skin effect correction in the bus bar as the following: with asymmetric positioning of the magnetic sensor with respect to the bus bar (1), reduction of lateral dimensions of the bus bar (1) in the vicinity of the magnetic sensor (2), and the implementation of a magnetic filter (4), the implementation of an open magnetic yoke (5), and the implementation of an electric filter (6) and the combination of two or more above mentioned methods.
Abstract:
Ein Magnetfeldsensor für die Messung von wenigstens einer Komponente eines Magnetfeldes umfasst einen ferromagnetischen Kern (4), der als Magnetfeldkonzentrator dient, eine Erregerspule (3) und einen Auslesesensor (5). Der Auslesesensor (5) umfasst vorzugsweise zwei in der Nähe des äusseren Randes des ferromagnetischen Kerns (4) angeordnete Sensoren und misst die wenigstens eine Komponente des Magnetfeldes. Der ferromagnetische Kern (4) ist ringförmig . Beim Betrieb des Magnetfeldsensors wird die Erregerspule (3) temporär mit einem Strom beaufschlagt, um den ferromagnetischen Kern (4) in einen Zustand vorbestimmter Magnetisierung zu bringen.
Abstract:
A semiconductor device for measuring ultra low currents down to the level of single electrons or low voltages comprises a first and a second voltage supply terminal (1, 2), an input terminal (3) for receiving an electrical current or being supplied with a voltage to be measured, a bipolar transistor (5) having a base (B), an emitter (E) and a collector (C), wherein a first PN junction is formed between the base and the collector and a second PN junction is formed between the base and the emitter, wherein the emitter is coupled to the input terminal and the base is coupled to the second voltage supply terminal, and wherein the first PN junction is designed for reverse biased operation as an avalanche diode, and a quenching and recharging circuit (6) having a first terminal (7) coupled to the first voltage supply terminal and a second terminal (8) coupled to the collector (C) of the bipolar transistor (5), the quenching and recharging circuit permitting operation of the first PN junction reverse biased above the breakdown voltage of the first PN junction.
Abstract:
Es werden ein Verfahren und eine Vorrichtung zur Bestimmung von lumineszierenden Molekülen mach der Methode der Fluoreszenz-Korrelationsspektroskopie vorgeschlagen. Das Verfahren umfasst die Schritte: a) Bereitstellen einer Probe (12) umfassend lumineszierende Moleküle, b) Bestrahlen der Probe (12) mit einer optischen Anregungseinrichtung (2, 4, 6, 8) umfassend wenigstens eine Lichtquelle und wenigstens ein insbesondere diffraktives optisches Element (7) zur Aufspaltung von hindurchtretendem Licht in multiple Strahlen, und eine Fokussieroptik (8) zur Fokussierung von hindurchtretenden multiplen Lichtstrahlen in multiple konfokale Volumenelemente, c) Auffangen von Emissionsstrahlung aus den multiplen konfokalen Volumenelementen mittels einer ortsauflösenden Sensormatrixanordnung (20), wobei die Sensormatrixanordnung eine in IC-Technologie, insbesondere in CMOS-Technologie hergestellte und in einem Sensorchip (20) in Geiger-Modus-Beschaltung integrierte Sensormatrix aus Avalanche-Fotodioden AD ist, und d) Verarbeiten der von der Avalanche-Fotodiodenmatrix bereitgestellten Signale mittels einer vorzugsweise in den Sensorchip integrierten Signalverarbeitungs- und -auswerteeinrichtung.
Abstract:
Ein symmetrisches vertikales Hallelement umfasst eine Wanne (2) eines ersten Leitfähigkeitstyps, die in ein Substrat (3) eines zweiten Leitfähigkeitstyps eingebettet ist und die mit vier als Strom- und Spannungskontakten dienenden Kontakten (4, 5, 6, 7) kontaktiert ist. Ein solches Hallelement mit vier Kontakten kann in elektrischer Hinsicht als eine durch vier Widerstände R 1 bis R 4 des Hallelementes gebildete Widerstandsbrücke angesehen werden. Das Hallelement wird in elektrischer Hinsicht dann als ideal angesehen, wenn die vier Widerstände R 1 bis R 4 den gleichen Wert aufweisen. Die Erfindung schlägt eine Reihe von Massnahmen vor, um die Widerstandsbrücke elektrisch abzugleichen. Eine erste Massnahme besteht darin, mindestens einen zusätzlichen Widerstand vorzusehen. Eine zweite Massnahme besteht darin, die elektrische Leitfähigkeit der Wanne lokal zu erhöhen oder zu verkleinern. Eine dritte Massnahme besteht darin, zwei Hallelemente vorzusehen, die elektrisch so parallel geschaltet sind, dass ihre Hallspannungen gleichsinnig sind und sich ihre Offsetspannungen weitgehend kompensieren.
Abstract:
A magnetic field sensor for measuring a direction of a magnetic field in a plane comprises two sensing structures (1A; 1B) that can be operated as a rotating Hall element. The two Hall elements are rotated in discrete steps in opposite directions. Such a magnetic field sensor can be used as current sensor for measuring a primary current flowing through a conductor (15).
Abstract:
A semiconductor photodiode (18) is formed as a pn-junction between a region (2) of a first conductivity type and a region (6) of a second conductivity type. The region (6) of the second conductivity type is approximately hemispherical. A mini guard ring (8), i.e. a ring of the second conductivity type having a junction depth that is much smaller than the junction depth of the region (6) preferably surrounds the region (6) in order to prevent surface trapping. The photodiode (18) is operated with a high reverse bias so that light falling on the photodiode (18) produces the avalanche effect.
Abstract:
The invention relates to a magnetic field sensor for measuring at least two components of a magnetic field. Said sensor comprises a ferromagnetic core (4), which is placed on a semiconductor chip (1), a field coil (2) to which a current can be applied, and two readout sensors (5, 6). The ferromagnetic core (4) is annular. The field coil (2) is preferably made from conductor tracks (9, 10; 23) of the semiconductor chip (1) and from bonding wires (11, 12; 24).
Abstract:
The invention belongs to the field of devices and processes for measurement of electrical quantities and more precisely refers to measuring sensors and the procedures for measuring bus bar current with skin effect correction. The invention in the subject solves the problem of designing a measuring magnetic current sensor, the signal-primary current ratio of which is frequency independent in a relatively wide frequency range. This is achieved so that the invention in the subject explains the measuring procedures and the embodiments of the measuring sensor with skin effect correction in the bus bar as the following: with asymmetric positioning of the magnetic sensor with respect to the bus bar (1), reduction of lateral dimensions of the bus bar (1) in the vicinity of the magnetic sensor (2), and the implementation of a magnetic filter (4), the implementation of an open magnetic yoke (5), and the implementation of an electric filter (6) and the combination of two or more above mentioned methods.
Abstract:
A Hall sensor comprises a Hall element (1; 30; 31; 60) and an amplifier (2; 32; 33). The Hall element is placed inside the amplifier so that the current flowing through the Hall element also flows through the transistors of an amplifier stage of the amplifier. The current flowing through the Hall element flows for example through the transistors of an input stage of the amplifier. In doing so the current consumption of the Hall sensor is reduced to the current the amplifier consumes itself. The Hall sensor is preferably operated in a modified spinning current method that preserves the correlation of the noise as far as possible. Preferably, the current flowing through the Hall element is pulsed. This mode of operation is useful for applications based on a battery as power supply. The signal to noise ratio related to the power consumption increases. A pulsed operation means that the current flowing through the Hall element is switched on and off with a predetermined frequency.