Abstract:
Systems and methods for exhaust gas recirculation in which at least a desired effective oxygen concentration is maintained for stable combustion at increased recirculation rates. Oxygen-enriched gas is injected into the recirculated exhaust gas to achieve the desired effective oxygen concentration.
Abstract:
Systems and methods for exhaust gas recirculation in which a desired oxygen concentration is maintained for stable combustion at increased recirculation rates. Exhaust gas of an energy generation system is divided and reintroduced at different locations of the system.
Abstract:
In one embodiment, a method for generating heat energy includes injecting a stream having a concentration of at least 50% oxygen (O2 stream) into a primary gas stream through a mixer, the mixer discharging the O2 stream as two or more spaced jets traversing the primary stream, thereby enriching the primary gas stream. The method further includes mixing fuel with the enriched primary gas stream, thereby forming a fuel stream; and combusting the fuel stream, thereby forming a flue gas stream.
Abstract:
Apparatus and methods for improved combustion of oxygen and a mixture of a non-gaseous fuel, which includes providing: 1) a source of a mixture of non-gaseous fuel and conveying gas; 2) a source of oxygen; 3) a burner operatively associated with a combustion chamber; 4) a fuel duct in fluid communication with the source of mixed non-gaseous fuel and conveying gas; 5) a tubular oxygen lance fluidly communicating with the source of oxygen; and 6) at least two injection elements in fluid communication with the source of oxygen. The fuel duct includes a portion that extends along an axis towards the burner. The lance is disposed along the axis and has a diameter D. The injection elements are configured to inject oxygen into, and mix therewith, a flow of the mixture upstream of, or at, the burner. At least one of the injection elements receives oxygen from the lance. The injection elements are spaced apart by a distance X, which is greater than the length of diameter D.
Abstract:
An improved hydrogen generation system and method for using the same are provided. The system includes an HDS unit configured to remove sulfur, a first and second pre-reformers configured to pre-reform a process gas and fuel gas, respectively, a first and second heat exchangers configured to dry and heat the pre-reformed fuel gas, respectively, and a reformer configured to produce a syngas and flue gas. The method includes using a process stream selected from the group consisting of air, PSA off-gas, hydrocarbon gas, and combinations thereof to dry the fuel gas and using a process stream selected from the group consisting of the flue gas, the syngas, and combinations thereof to heat the dry fuel gas. The second pre-reformer is a low-pressure pre-reformer, so that the heat contents of the fuel gas is increased through converting heavy hydrocarbons in the fuel gas to CO and H 2 by the second pre-reformer.
Abstract:
Disclosed are methods for operating a glass furnace, the method comprises the steps of feeding a non-pre-reformed hydrocarbon fuel gas stream to a pre-reformer forming a pre-reformed hydrocarbon fuel gas stream, feeding the pre-reformed hydrocarbon fuel gas stream to burners of the furnace, combusting oxidant and the pre-reformed hydrocarbon fuel gas with the burners to produce flue gas, heating air through heat exchange with the flue gas at a recuperator, and transferring heat from heated air to pre-reformer tubes of the pre-reformer. A glass furnace system is also disclosed.
Abstract:
In one embodiment, a method for generating heat energy includes injecting a stream having a concentration of at least 50% oxygen (O 2 stream) into a primary gas stream through a mixer, the mixer discharging the O 2 stream as two or more spaced jets traversing the primary stream, thereby enriching the primary gas stream. The method further includes mixing fuel with the enriched primary gas stream, thereby forming a fuel stream; and combusting the fuel stream, thereby forming a flue gas stream.
Abstract:
A method and apparatus for optimizing boilers with high flue gas recirculation rate based with laser based diagnostic technology. A tunable diode laser is emitted from a launcher, is altered by the absorption spectra of the gas species that it intersects, and encounters a receiver. The signal is processed, then the information is used to modulate the flowrate of hydrogen blended fuel or oxygen enriched air into the burner.
Abstract:
A method for decreasing steam methane reformer (SMR) tube temperature is provided. The method can include the steps of introducing a hydrocarbon containing feed to be reformed to a plurality of SMR tubes in the presence of steam under conditions effective to produce hydrogen and carbon monoxide, monitoring the temperature of at least a plurality of the tubes within the SMR during operation, comparing the monitored temperature against a first predetermined value, and introducing an effective amount of water to a reformer tube when the monitored temperature of the reformer tube is at or above the predetermined value, such that the temperature of the reformer tube is reduced.