Abstract:
A system includes a first scintillator element including a neutron responsive scintillating material and a second scintillator element including the neutron responsive scintillating material. The second scintillator element is positioned within less than 5 mm of the first scintillator element throughout an optically active region. The system further includes a number of wavelength shifting fibers positioned between the first scintillator element and the second scintillator element, each of the plurality of wavelength shifting fibers optically coupled to both the first scintillator element and the second scintillator element.
Abstract:
A system for efficient neutron detection is described. The system includes a neutron scintillator formed with a number of protruding parallel ribs each side of the scintillator, forming a first set of ribs and a second set of ribs. The ribs have a protrusion height that provides a selected neutron absorption efficiency. The system includes a set of wavelength shifting fibers positioned between each adjacent pair of ribs on both the first side and the second side. Each set of wavelength shifting fibers are in optical proximity to the adjacent pair of the ribs that set of fibers are positioned between.
Abstract:
A wearable neutron detector is disclosed that includes a body attachment portion that is configured to be secured to a portion of a human body. The wearable detector includes a scintillator having a plurality of wavelength optical shifting fibers. One or more light converters are connected with the wavelength optical shifting fibers. A detection circuit is connected with the light converters configured to detect a neutron event. A control unit is connected with the detection circuit. An annunciator is connected with the control unit for generating an enunciation of the neutron event. The electronic components are housed within the body attachment portion.
Abstract:
A system for efficient neutron detection is described. The system includes a neutron scintillator formed with a number of protruding parallel ribs each side of the scintillator, forming a first set of ribs and a second set of ribs. The ribs have a protrusion height that provides a selected neutron absorption efficiency. The system includes a set of wavelength shifting fibers positioned between each adjacent pair of ribs on both the first side and the second side. Each set of wavelength shifting fibers are in optical proximity to the adjacent pair of the ribs that set of fibers are positioned between.
Abstract:
A wearable neutron detector is disclosed that includes a body attachment portion that is configured to be secured to a portion of a human body. The wearable detector includes a scintillator having a plurality of wavelength optical shifting fibers. One or more light converters are connected with the wavelength optical shifting fibers. A detection circuit is connected with the light converters configured to detect a neutron event. A control unit is connected with the detection circuit. An annunciator is connected with the control unit for generating an enunciation of the neutron event. The electronic components are housed within the body attachment portion.
Abstract:
A neutron detection system includes a neutron scintillator having a thickness greater than an optimal thickness and less than twice the optimal thickness. The system includes a first layer of wavelength shifting fiber optic elements positioned on a first side of the neutron scintillator. Adjacent fibers of the first layer pass light to distinct photo-multiplication devices. The system further includes a second layer of wavelength shifting fiber optic elements positioned on a second side of the neutron scintillator. Adjacent fibers of the second layer pass light to distinct photo-multiplication devices. The two layers may share photo-multiplication devices or use different sets of photo-multiplication devices. The system includes a controller that distinguishes a neutron radiation event from a gamma radiation event in response to electronic signals from the distinct photo-multiplication devices.
Abstract:
The present invention relates generally to radiographic imaging of storage devices and more particularly, to a method and device for protecting a storage device from radiographic imaging. Security devices are available which, if their inner workings could be discovered, would be ineffective and therefore would no longer prevent undetected, unauthorized discovery of objects they are designed to secure. An example is a mechanical combination lock which, if the position of its various internal components could be ascertained, would allow unauthorized access. In addition, it is also important in some instances to prevent unwanted radiographic imaging of a storage device so that its contents cannot be ascertained. The current art of radiographic imaging has significantly increased the possibility of this type of intrusion into areas protected by such high security devices. Other types of locks, closures, fasteners, and bolts that protect by mechanically restricting access and which are themselves assumed secured because of the inability of an intruder to ascertain the position of their locking mechanism are also vulnerable to radiographic imaging.
Abstract:
A neutron detector circuit for a neutron detector is disclosed that includes a scintillator having a plurality of wavelength shifting optical fibers. A first detection circuit is connected with a first PMT output that is configured to generate a first detection circuit output in response to a first neutron event. A second detection circuit is connected with a second PMT output that is configured to generate a second detection circuit output in response to a second neutron event. A coincidence detection circuit is included that has inputs connected with the first and second detection circuit outputs that is configured to generate a neutron event count output pulse in response to coincident signals being received by the coincidence detection circuit from the first and second detection circuit outputs.
Abstract:
A neutron detector circuit for a neutron detector is disclosed that includes a scintillator having a plurality of wavelength shifting optical fibers. A first detection circuit is connected with a first PMT output that is configured to generate a first detection circuit output in response to a first neutron event. A second detection circuit is connected with a second PMT output that is configured to generate a second detection circuit output in response to a second neutron event. A coincidence detection circuit is included that has inputs connected with the first and second detection circuit outputs that is configured to generate a neutron event count output pulse in response to coincident signals being received by the coincidence detection circuit from the first and second detection circuit outputs.
Abstract:
A neutron detection system includes a neutron scintillator having a thickness greater than an optimal thickness and less than twice the optimal thickness. The system includes a first layer of wavelength shifting fiber optic elements positioned on a first side of the neutron scintillator. Adjacent fibers of the first layer pass light to distinct photo-multiplication devices. The system further includes a second layer of wavelength shifting fiber optic elements positioned on a second side of the neutron scintillator. Adjacent fibers of the second layer pass light to distinct photo-multiplication devices. The two layers may share photo-multiplication devices or use different sets of photo-multiplication devices. The system includes a controller that distinguishes a neutron radiation event from a gamma radiation event in response to electronic signals from the distinct photo-multiplication devices.