Abstract:
Disclosed herein are embodiments of systems, methods, and products comprises an authentication server for authentication leveraging multiple audio channels. The server receives an authentication request regarding a user upon the user interacting with a first electronic device. The server requests the first device to transmit a first audio file of an audio sample to the server. The audio sample may be the user's audio command or a machine-generated audio signal. The server requests a second electronic device to transmit a second audio file that is the recording of the same audio sample to the server. The second electronic device is a trusted device in proximity of the first device and executes an authentication function to enable the recording and transmitting of the audio sample. The server determines a similarity score between the first audio file and the second audio file and authenticates the user based on the similarity score.
Abstract:
A score indicating a likelihood that a first subject is the same as a second subject may be calibrated to compensate for aging of the first subject between samples of age-sensitive biometric characteristics. Age of the first subject obtained at a first sample time and age of the second subject obtained at a second sample time may be averaged, and an age approximation may be generated based on at least the age average and an interval between the first and second samples. The age approximation, the interval between the first and second sample times, and an obtained gender of the subject are used to calibrate the likelihood score.
Abstract:
Systems and methods for call detail record (CDR) analysis to determine a risk score for a call and identify fraudulent activity and for fraud detection in Interactive Voice Response (IVR) systems. An example method may store information extracted from received calls. Queries of the stored information may be performed to select data using keys, wherein each key relates to one of the received calls, and wherein the queries are parallelized. The selected data may be transformed into feature vectors, wherein each feature vector relates to one of the received calls and includes a velocity feature and at least one of a behavior feature or a reputation feature. A risk score for the call may be generated during the call based on the feature vectors.
Abstract:
Aspects of the invention determining a threat score of a call traversing a telecommunications network by leveraging the signaling used to originate, propagate and terminate the call. Outer-edge data utilized to originate the call may be analyzed against historical, or third party real-time data to determine the propensity of calls originating from those facilities to be categorized as a threat. Storing the outer edge data before the call is sent over the communications network permits such data to be preserved and not subjected to manipulations during traversal of the communications network. This allows identification of threat attempts based on the outer edge data from origination facilities, thereby allowing isolation of a compromised network facility that may or may not be known to be compromised by its respective network owner. Other aspects utilize inner edge data from an intermediate node of the communications network which may be analyzed against other inner edge data from other intermediate nodes and/or outer edge data.
Abstract:
Systems and methods for call detail record (CDR) analysis to determine a risk score for a call and identify fraudulent activity and for fraud detection in Interactive Voice Response (IVR) systems. An example method may store information extracted from received calls. Queries of the stored information may be performed to select data using keys, wherein each key relates to one of the received calls, and wherein the queries are parallelized. The selected data may be transformed into feature vectors, wherein each feature vector relates to one of the received calls and includes a velocity feature and at least one of a behavior feature or a reputation feature. A risk score for the call may be generated during the call based on the feature vectors.
Abstract:
Un sistema de verificación automática de hablantes (ASV) incorpora una primera red neuronal profunda para extraer características acústicas profundas, como características CQCC profundas, de una muestra de voz recibida. Las características acústicas profundas son procesadas por una segunda red neuronal profunda que clasifica las características acústicas profundas según una probabilidad determinada de incluir una condición de suplantación. A continuación, un clasificador binario clasifica la muestra de voz como genuina o suplantada. (Traducción automática con Google Translate, sin valor legal)
Abstract:
Embodiments described herein provide for a voice biometrics system execute machine-learning architectures capable of passive, active, continuous, or static operations, or a combination thereof. Systems passively and/or continuously, in some cases in addition to actively and/or statically, enrolling speakers as the speakers speak into or around an edge device (e.g., car, television, radio, phone). The system identifies users on the fly without requiring a new speaker to mirror prompted utterances for reconfiguring operations. The system manages speaker profiles as speakers provide utterances to the system. Machine-learning architectures implement a passive and continuous voice biometrics system, possibly without knowledge of speaker identities. The system creates identities in an unsupervised manner, sometimes passively enrolling and recognizing known or unknown speakers. The system offers personalization and security across a wide range of applications, including media content for over-the-top services and IoT devices (e.g., personal assistants, vehicles), and call centers.
Abstract:
Abstract An automated speaker verification (ASV) system incorporates a first deep neural network to extract deep acoustic features, such as deep CQCC features, from a received voice sample. The deep acoustic features are processed by a second deep neural network that classifies the deep acoustic features according to a determined likelihood of including a spoofing condition. A binary classifier then classifies the voice sample as being genuine or spoofed.
Abstract:
Systems, methods, and computer-readable media for call classification and for training a model for call classification, an example method comprising: receiving DTMF information from a plurality of calls; determining, for each of the calls, a feature vector including statistics based on DTMF information such as DTMF residual signal comprising channel noise and additive noise; training a model for classification; comparing a new call feature vector to the model; predicting a device type and geographic location based on the comparison of the new call feature vector to the model; classifying the call as spoofed or genuine; and authenticating a call or altering an IVR call flow.
Abstract:
The present invention is directed to a deep neural network (DNN) having a triplet network architecture, which is suitable to perform speaker recognition. In particular, the DNN includes three feed-forward neural networks, which are trained according to a batch process utilizing a cohort set of negative training samples. After each batch of training samples is processed, the DNN may be trained according to a loss function, e.g., utilizing a cosine measure of similarity between respective samples, along with positive and negative margins, to provide a robust representation of voiceprints.