Graph-derived features for fraud detection

    公开(公告)号:AU2021239845A1

    公开(公告)日:2022-09-08

    申请号:AU2021239845

    申请日:2021-03-15

    Abstract: Embodiments described herein provide for performing a risk assessment using graph-derived features of a user interaction. A computer receives interaction information and infers information from the interaction based on information provided to the computer by a communication channel used in transmitting the interaction information. The computer may determine a claimed identity of the user associated with the user interaction. The computer may extract features from the inferred identity and claimed identity. The computer generates a graph representing the structural relationship between the communication channels and claimed identities associated with the inferred identity and claimed identity. The computer may extract additional features from the inferred identity and claimed identity using the graph. The computer may apply the features to a machine learning model to generate a risk score indicating the probability of a fraudulent interaction associated with the user interaction.

    CALL DETAIL RECORD ANALYSIS TO IDENTIFY FRAUDULENT ACTIVITY AND FRAUD DETECTION IN INTERACTIVE VOICE RESPONSE SYSTEMS

    公开(公告)号:AU2019229365A1

    公开(公告)日:2019-10-03

    申请号:AU2019229365

    申请日:2019-09-11

    Abstract: The invention proposes a computer-implemented method for determining a risk score for a call, the method comprising: querying, by a computer, call detail records to retrieve source automatic number identifications (ANIs) and destination ANIs of the corresponding calls; generating, by the computer, feature vectors based on the source ANIs and the destination ANIs of the calls; training, by the computer, a machine learning model using the feature vectors; receiving, by the computer, a call from a particular phone number; generating, by the computer, a feature vector of the call comprising the particular phone number; executing, by the computer during the call, the machine learning model applying the feature vector for the call to generate a risk score for the call, the risk score indicating a likelihood of the call being fraudulent; and triggering, by the computer during the call, computer operation based on the risk score for the calls.

    6.
    发明专利
    未知

    公开(公告)号:ES2993990T3

    公开(公告)日:2025-01-15

    申请号:ES18712052

    申请日:2018-03-02

    Abstract: Un sistema de verificación automática de hablantes (ASV) incorpora una primera red neuronal profunda para extraer características acústicas profundas, como características CQCC profundas, de una muestra de voz recibida. Las características acústicas profundas son procesadas por una segunda red neuronal profunda que clasifica las características acústicas profundas según una probabilidad determinada de incluir una condición de suplantación. A continuación, un clasificador binario clasifica la muestra de voz como genuina o suplantada. (Traducción automática con Google Translate, sin valor legal)

Patent Agency Ranking