Abstract:
Ligand-functionalized substrates are describe that are useful in selectively binding and removing biological materials from biological samples, and methods for preparing the same.
Abstract:
Guanidinyl ligand-functionalized polymers, methods of making the same, and substrates bearing a grafted coating of the ligand-functional polymers are described. The grafted polymer has the requisite affinity for binding neutral or negatively charged biomaterials, such as cells, cell debris, bacteria, spores, viruses, nucleic acids, endotoxins and proteins, at pH's near or below the pI's of the biomaterials.
Abstract:
Semi-interpenetrating polymeric networks are described. More specifically, the semi-interpenetrating polymeric networks include at least two polymers that are closely associated. The first polymer is an ionic polymer that is not crosslinked. The second polymer is a cross-linked polymer that can be either another ionic polymer or a non-ionic polymer. Methods of making the semi-interpenetrating polymeric networks, articles containing the semi-interpenetrating polymeric networks, and methods of using the semi-interpenetrating polymeric networks are also described. The semi-interpenetrating polymeric networks can function as ion exchange resins.
Abstract:
Precisely-shaped composites and methods for making these composites are disclosed. The method of this disclosure comprises introducing a precursor composition onto a production tool having at least one continuous surface and a plurality of cavities so as to fill at least a portion of the cavities with the precursor composition and wherein the precursor composition, upon curing, forms a composition having a shape corresponding to the cavities thereby resulting in a plurality of discrete, precisely-shaped particles having a porosity comprising one of the following: (a) 10 m 2 /g or greater or (b) 5 kdalton or greater. The precisely-shaped particles have at least one essentially flat side. The precisely-shaped particles can be confined in a vessel and used for chromatographic applications.
Abstract:
A microbial detection article and methods of using the same, the article comprising: a base member comprising a self-supporting water impervious substrate with first and second generally opposed major surfaces; a filter assembly defining a filter assembly aperture therein, and having a composite filter body mounted across the filter assembly aperture; wherein the composite filter body comprises: a microporous membrane, and a water-absorbent layer in fluid communication with the microporous membrane; and a cover sheet.
Abstract:
A composition is disclosed comprising a hydrophobic monomer having the structure:CH2=CR4C(O)NHC(R1R1)(C(R1R1))nC(O)XR3 wherein n is an integer of 0 or 1; R1 is independently selected from at least one of: a hydrogen atom, alkyls, aryls, and alkylaryls, wherein the alkyls, aryls, and alkylaryls have a total of 10 carbon atoms or less; R3 is a hydrophobic group selected from at least one of: alkyls, aryls, alkylaryls and ethers, wherein the alkyls, aryls, alkylaryls and ethers have a total number of carbon atoms ranging from 4 to 30; R4 is H or CH3; X is O or NH. In some embodiments the hydrophobic monomer is derived from an amine or an alcohol (HXR3) that has a hydrophilicity index of 25 or less. A polymerizable composition comprising the hydrophobic monomer is disclosed, which optionally may comprise a cross-linking monomer and/or a non-cross-linking monomer. This polymerizable mixture may be used to from hydrophobically-derivatized supports, which may be used in applications such as hydrophobic interaction chromatography.
Abstract:
Ligand functionalized substrates, methods of making ligand functionalized substrates, and methods of using functionalized substrates are disclosed.
Abstract:
A filter plate article and methods of using the same, the article comprising: a base member comprising a self-supporting water impervious substrate with first and second generally opposed major surfaces; a filter assembly defining a filter assembly aperture therein, and having a composite filter body mounted across the filter assembly aperture; wherein the composite filter body comprises: a microporous membrane, and a water-absorbent layer in fluid communication with the microporous membrane; and a cover sheet. A filtration apparatus for filtering liquid samples through a filtration membrane.
Abstract:
Ligand functionalized substrates, methods of making ligand functionalized substrates, and methods of using functionalized substrates are disclosed.
Abstract:
Ligand functionalized substrates, methods of making ligand functionalized substrates, and methods of using functionalized substrates are disclosed.