Abstract:
An electro-optical system capable of being embarked aboard mobile ground or flying units, to determine the optical flow generated by obstacles in relative motion with respect to the mobile unit. The system comprises radiation (5), receiver means (1) for converting the radiation reflected by the objects into electrical signals and means (8) for processing the signals generated by the receiver means. The receiver means (1) are based on vision sensors with matrix configuration. The emitter means (5, 6) shape the radiation beam in such a way that the radiation reflected by the objects and collected by the receiver means impacts at least on a part of the receiver matrix. The processing means compute the optical flow only on the elements of the receiver matrix that are impacted by the radiation.
Abstract:
An emitter (F) for incandescent light sources, in particular a filament, capable of being brought to incandescence by the passage of electric current is obtained in such a way as to have a value of spectral absorption α that is high in the visible region of the spectrum and low in the infrared region of the spectrum, said absorption α being defined as α=1-ρ-τ, where ρ is the spectral reflectance and τ is the spectral transmittance of the emitter.
Abstract:
In a process to make a nano-structured component, such as a photonic crystal or an emitter (10) which can be led to incandescence through the passage of electric current, at least one layer made of anodized porous alumina (1) is used as sacrificial element for the structuring of at least a part of the component (10).
Abstract:
An elecroluminescent device (1) comprises: a supporting substrate (2); at least two electrodes (3) positioned on the substrate (2); at least a three-dimensional percolated layer (4), positioned on the substrate (2) between the two electrodes (3), having a metallic mesoporous structure defining a multitude of cavities of micrometric or nanometric dimensions. Present in the cavities of the three-dimensional percolated layer (4) are a multitude of luminescent inclusions (5), which operate to emit light when energized by elections which, as a result of electron tunneling effect, pass through the three-dimensional percolated layer (4).
Abstract:
In a process to make a nano-structured component, such as a photonic crystal or an emitter (10) which can be led to incandescence through the passage of electric current, at least one layer made of anodized porous alumina (1) is used as sacrificial element for the structuring of at least a part of the component (10).
Abstract:
In a process to make a nano-structured component, such as a photonic crystal or an emitter (10) which can be led to incandescence through the passage of electric current, at least one layer made of anodized porous alumina (1) is used as sacrificial element for the structuring of at least a part of the component (10).
Abstract:
An emitter for incandescent light sources, in particular a filament, capable of being brought to incandescence by the passage of electric current is obtained in such a way as to have a value of spectral absorption α that is high in the visible region of the spectrum and low in the infrared region of the spectrum, said absorption α being defined as α=1-ρ-τ, where ρ is the spectral reflectance and τ is the spectral transmittance of the emitter.
Abstract:
An emitter for incandescent light sources, in particular a filament, capable of being brought to incandescence by the passage of electric current is obtained in such a way as to have a value of spectral absorption α that is high in the visible region of the spectrum and low in the infrared region of the spectrum, said absorption α being defined as α=1-ρ-τ, where ρ is the spectral reflectance and τ is the spectral transmittance of the emitter.
Abstract:
An electro-optical system capable of being embarked aboard mobile ground or flying units, to determine the optical flow generated by obstacles in relative motion with respect to the mobile unit. The system comprises radiation (5), receiver means (1) for converting the radiation reflected by the objects into electrical signals and means (8) for processing the signals generated by the receiver means. The receiver means (1) are based on vision sensors with matrix configuration. The emitter means (5, 6) shape the radiation beam in such a way that the radiation reflected by the objects and collected by the receiver means impacts at least on a part of the receiver matrix. The processing means compute the optical flow only on the elements of the receiver matrix that are impacted by the radiation.
Abstract:
A system for the production of electrical energy, comprising: a combustion chamber (14) made of material that is able to withstand high temperatures, an injection device (16) connected to said combustion chamber (14) by means of an injection conduit (15), means (17) for supplying combustion support substance into the combustion chamber (14) and means (18) for the removal of gaseous combustion products, means (26) for the selective emission of radiation onto the outer surface of the combustion chamber (14). The combustion chamber (14) is enclosed in a conversion chamber (20) within which are maintained at sub-atmospheric pressure conditions, so that a substantial part of the heat developed by the combustion reaction is converted into electromagnetic radiation.0 The radiation emitted inside the conversion chamber (20) impacts on conversion means (24) which convert electromagnetic radiation into electricenergy. Said conversion means are preferably constituted by photovoltaic cells with a band gap in the order of 0.5 -0.8eV.