Abstract:
The invention relates to a photodetection device comprising a substrate and a diodes network, the substrate comprising an absorption layer and each diode comprising a collection region with a first type of doping in the absorption layer. The device comprises a conduction mesh under the surface of the substrate, comprising at least one conduction channel inserted between the collection regions of two adjacent diodes, the at least one conduction channel having a second doping type opposite the first type and a higher doping density than the absorption layer. The doping density of the at least one conduction channel is derived from metal diffusion in the absorption layer from a metal mesh present on the substrate surface. The absorption layer has the first doping type. The invention also relates to a method of making such a device.
Abstract:
A photodetection device and a method for manufacturing the device, the device including a substrate and an array of diodes, the substrate including an absorption layer including a first type of doping, and each diode including, in the absorption layer, a collection region including a second type of doping opposite to the first type. The device further includes, under the surface of the substrate, a conductive mesh including at least one conductive channel inserted between the collection regions of two adjacent diodes, the at least one conductive channel including the first type of doping and a higher doping density than the absorption layer. The doping density of the at least one conductive channel is the result of a diffusion of metal in the absorption layer from a metal mesh provided on the surface of the substrate.
Abstract:
The invention relates to a metasurface lens using a planar array of elementary resonators, each elementary resonator being the shape of a cross the arms of which are of unequal length. The phase shift applied by an elementary resonator is dependent on its orientation in the plane of the lens, the orientation of the various elementary resonators being determined depending on the shape of the desired wavefront. Such a lens has a substantially uniform transmission-coefficient distribution and a low chromatic aberration. Furthermore, it has a very good spectral selectivity.
Abstract:
A photodetection device and a method for manufacturing the device, the device including a substrate and an array of diodes, the substrate including an absorption layer including a first type of doping, and each diode including, in the absorption layer, a collection region including a second type of doping opposite to the first type. The device further includes, under the surface of the substrate, a conductive mesh including at least one conductive channel inserted between the collection regions of two adjacent diodes, the at least one conductive channel including the first type of doping and a higher doping density than the absorption layer. The doping density of the at least one conductive channel is the result of a diffusion of metal in the absorption layer from a metal mesh provided on the surface of the substrate.
Abstract:
A photodetection device including a diode array and a method for production thereof. In the device, each diode of the array includes an absorption region having a first bandgap energy and a collection region having a first doping type, and adjacent diodes in a network are separated by a trench including sides and a bottom. The bottom and sides of the trench form a stabilization layer having a second doping type, opposite the first doping type, and a bandgap energy greater than the first bandgap energy of the absorption regions.
Abstract:
The invention relates to a photodetection device comprising a substrate and a diodes network, the substrate comprising an absorption layer and each diode comprising a collection region with a first type of doping in the absorption layer. The device comprises a conduction mesh under the surface of the substrate, comprising at least one conduction channel inserted between the collection regions of two adjacent diodes, the at least one conduction channel having a second doping type opposite the first type and a higher doping density than the absorption layer. The doping density of the at least one conduction channel is derived from metal diffusion in the absorption layer from a metal mesh present on the substrate surface. The absorption layer has the first doping type. The invention also relates to a method of making such a device.
Abstract:
A photodetection device including a diode array and a method for production thereof. In the device, each diode of the array includes an absorption region having a first bandgap energy and a collection region having a first doping type, and adjacent diodes in a network are separated by a trench including sides and a bottom. The bottom and sides of the trench form a stabilization layer having a second doping type, opposite the first doping type, and a bandgap energy greater than the first bandgap energy of the absorption regions.
Abstract:
La photodiode fabriquée comprend un empilement de trois couches comprenant une couche intermédiaire (2) interposée entre une première et une deuxième couches ( 1, 3) de semi-conducteurs d'un premier type de conductivité et une région (4) en contact avec au moins la couche intermédiaire (2) et la deuxième couche (3) et s'étendant transversalement par rapport aux plans des trois couches ( 1, 2, 3), ladite région (4) présentant un deuxième type de conductivité opposé au premier type de conductivité. La couche intermédiaire (2) est réalisée en un matériau semi-conducteur du deuxième type de conductivité, une inversion du type de conductivité de la couche intermédiaire (2) depuis le deuxième type de conductivité vers le premier type de conductivité étant induite par les dopants de premier type de conductivité présents dans les première et deuxième couches (1, 3) de façon à former une jonction P-N avec ladite région (4).
Abstract:
L'invention concerne un dispositif de détection photonique, de type MESA, comportant au moins une première jonction, qui comporte elle - même une première couche collectrice (2), des flancs (5) formés ou gravés dans cette couche collectrice, caractérisé en ce que ces flancs comportent au moins partiellement une couche (51) de dopage opposé au dopage de la première couche collectrice.
Abstract:
A MESA-type photon detection device comprising at least one first junction which in turn comprises a first collector layer (2), and flanks (5) formed or etched therein, characterised in that the flanks at least partially comprise a layer (51) oppositely doped to the first collector layer.