Abstract:
Method and apparatus for ablating target tissue adjacent pulmonary veins of a patient. A clamping ablation tool can include an upper arm (12) having an upper neck (24), a link assembly (25), and an upper actuator (18). The link assembly can include a distal electrode and a proximal electrode. The clamping ablation tool includes a lower arm (14) that mates with the upper arm (12). The lower arm (21) can include a lower neck (42), a distal jaw (44), and a lower actuator (46). The distal jaw can include a jaw electrode (48), and the lower actuator (46) can control movement of the distal jaw (44).
Abstract:
A method for closing an opening at a target site including bodily tissue including embedding a plurality of self-closing clips into the target site in a spaced apart manner about a perimeter of the opening. Each of the clips has opposing clip ends and an intermediate segment. A flexible tether is coupled to the embedded clips to form a loop about the opening perimeter. A pulling force is applied onto at least one of the loop ends, thereby drawing the perimeter of the opening onto itself to completely close the opening. The loop ends are secured to maintain the target site in a closed state. In some embodiments, the target site is apical cardiac tissue, and the method is performed as part of a trans-apical access procedure.
Abstract:
A system for ablating tissue and electrically interfacing with a heart including an electrosurgical instrument, an energy source, and a controller. The instrument includes a shaft maintaining first and second electrodes at a distal section. The electrodes are electrically isolated from one another. The controller controls delivery of energy from the energy source, and monitors electrical signals at the electrodes. The controller is programmed to operate in a monopolar mode and a bipolar mode. In the monopolar mode, the first and second electrodes are electrically uncoupled, and energy from the energy source is delivered to the first electrode in performing an ablation procedure. In the bipolar mode, first and second electrodes are electrically coupled and serve as opposite polarity poles to apply energy to a tissue target site, detect electrical signals at a tissue target site, or both.
Abstract:
Apparatus and methods for injecting biological agents into tissue. Devices are provided having elongate shafts and distal injection heads for driving needles into tissue and injecting medical agents into the tissue through the needles. A longitudinal force directed along the shaft can be translated to a needle driving force. Some devices provide controllably variable needle penetration depth. Devices include mechanical needle drivers utilizing four link pantographs, rack and pinions, and drive yokes for driving a first needle bearing body toward a second tissue contacting body. Other devices include inflatable members for driving and retracting needles. Still other devices include magnets for biasing the needles in extended and/or retracted positions. The invention includes minimally invasive methods for epicardially injecting cardiocyte precursor cells into infarct myocardial tissue.
Abstract:
System, device and method for ablating target tissue adjacent pulmonary veins of a patient through an incision. An ablation device can include a hinge including a cam assembly, a moving arm, a floating jaw, and a lower jaw. Fingers can engage the floating jaw to hold the floating jaw in a first position with respect to the moving arm. Some embodiments of the invention can provide an ablation device including a central support, an upper four-bar linkage coupled to the central support, an upper jaw coupled to the upper linkage, a lower four-bar linkage coupled to the central support, and a lower jaw coupled to the lower linkage. Some embodiments of the invention can provide an ablation device having an upper jaw including a first cannula connection and a lower jaw including a second cannula connection. The system can include a first catheter coupled to the first cannula connection and a second catheter coupled to the second cannula connection. The first and second catheters can be inserted through the incision and can move the upper and lower jaws adjacent the pulmonary veins.
Abstract:
An ablation device for ablating tissue having an outer wall and an inner wall, approximately parallel and concentric with said outer wall, defining an inner fluid chamber and an outer low pressure chamber. Each of the outer wall and the inner wall have an edge defining an open face of the fluid chamber and the low pressure chamber. An ablative element is contained within the fluid chamber. A source of low pressure is coupled to the low pressure chamber. When the edge of the outer wall and the edge of the inner wall contact a surface, the ablation device is at least partially secured to the surface by low pressure created in the low pressure chamber by the source of low pressure. The fluid chamber is at least partially fluidly isolated from the low pressure chamber when the ablation device is at least partially secured to the surface.
Abstract:
Method and apparatus for ablating target tissue adjacent pulmonary veins of a patient. The ablation device (30) can include a lower jaw assembly (32) including a proximal jaw (42) having a proximal electrode (50) and a distal jaw (62) having a distal electrode (70), and an upper jaw assembly (90) including an upper jaw (94) having an upper electrode (98). A proximal actuator (54) can be movable between a first position in which the proximal jaw is open and a second position in which the proximal jaw is clamped with respect to the upper jaw. A distal actuator (76) can be movable between a third position in which the distal jaw is open and a fourth position in which the distal jaw is clamped with respect to the upper jaw.
Abstract:
A device for holding a surgical suture including a base, a guide body, a cam body, a bearing member, and a spring member. The base has a top side, a front edge, and a back edge. The guide body projects from the top side of the base and defines a guide face having an entrance side and an exit side. The entrance side is adjacent the front edge and the exit side is adjacent the back edge. The cam body is pivotally mounted to the top side and forms a toothed surface positioned to selectively secure a surgical suture against the guide face. The spring member is positioned between the cam body and the bearing member, biasing the toothed surface toward the guide face.
Abstract:
A delivery system for percutaneously guiding a repair or replacement device into a desired position relative to a valve within a patient. The delivery system includes a longitudinal support tube having a distal end, a deformable centering loop extending from the distal end of the support tube, at least one stop positioned on the centering loop and spaced from the distal end of the support tube, at least one clip delivery system slideably attached to the centering loop, and a sheath that is longitudinally slideable relative to the support tube, the centering loop, and the at least one clip delivery tube.
Abstract:
Device for sub-xiphoid ablation of patient tissue. A sub-xiphoid access clamp has a handle, an elongate neck coupled to the handle and first and second opposing jaws. The first and second opposing jaws have first and second opposing relief segments being generally co-planar and concave with respect to one another to form a void therebetween, and first and second opposing elongate ablation elements positioned along the first and second opposing jaws and distal of the first and second opposing relief segments relative to the handle. The first and second opposing jaws are articulate between a closed position and an open position to admit, at least in part, a second portion of tissue of the patient within the void created by the first and second opposing relief segments while the first portion of tissue is positioned between the first and second ablation elements in the closed position.