Abstract:
A method for fabricating a photovoltaic device includes applying (206) a diblock copolymer layer on a substrate and removing a first polymer material from the diblock copolymer layer to form a plurality of distributed pores. A pattern forming layer is deposited (212) on a remaining surface of the diblock copolymer layer and in the pores in contact with the substrate. The diblock copolymer layer is lifted off (214) and portions of the pattern forming layer are left in contact with the substrate. The substrate is etched (216) using the pattern forming layer to protect portions of the substrate to form pillars in the substrate such that the pillars provide a radiation absorbing structure in the photovoltaic device.
Abstract:
Embodiments of the present invention provide a solar energy converter, which includes a silicon layer having at least two regions of a first and a second conductivity type that form a P-N junction, at least a portion of the silicon layer being porous, and pores in the portion of porous silicon containing a semiconductor material, the semiconductor material being different from silicon; and a first and a second electrode being placed at a bottom and a top surface of the silicon layer respectively. Methods of manufacturing the same are also provided.
Abstract:
A semiconductor-containing heterostructure including, from bottom to top, a IH-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a HI-V compound semiconductor barrier layer, and an optional, yet preferred, IH-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The HI-V compound semiconductor buffer layer and the HI-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the pi-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
Abstract:
A method is disclosed for forming a strained Si layer on SiGe, where the SiGe layer has improved thermal conductivity. A first layer (41) of Si or Ge is deposited on a substrate (10) in a first depositing step; a second layer (42) of the other element is deposited on the first layer in a second depositing step; and the first and second depositing steps are repeated so as to form a combined SiGe layer (50) having a plurality of Si layers and a plurality of Ge layers (41-44). The respective thicknesses of the Si layers and Ge layers are in accordance with a desired composition ratio of the combined SiGe layer. The combined SiGe layer (50) is characterized as a digital alloy of Si and Ge having a thermal conductivity greater than that of a random alloy of Si and Ge. This method may further include the step of depositing a Si layer (61) on the combined SiGe layer (50); the combined SiGe layer is characterized as a relaxed SiGe layer, and the Si layer (61) is a strained Si layer. For still greater thermal conductivity in the SiGe layer, the first layer and second layer may be deposited so that each layer consists essentially of a single isotope.
Abstract:
The present invention provides a method of fabricating a SiGe-on-insulator substrate in which lattice engineering is employed to decouple the interdependence between SiGe thickness, Ge fraction and strain relaxation. The method includes providing a SiGe-on-insulator substrate material comprising a SiGe alloy layer having a selected in-plane lattice parameter, a selected thickness parameter and a selected Ge content parameter, wherein the selected in-plane lattice parameter has a constant value and one or both of the other parameters, i.e., thickness or Ge content, have adjustable values; and adjusting one or both of the other parameters to final selected values, while maintaining the selected in-plane lattice parameter. The adjusting is achieved utilizing either a thinning process or a thermal dilution process depending on which parameters are fixed and which are adjustable.
Abstract:
Hemispheres (18) and spheres (28) are formed and employed for a plurality of applications. Hemispheres (18) are employed to form a substrate having an upper surface and a lower surface (12). The upper surface includes peaks of pillars (10) which have a base attached to the lower surface. The peaks have a density defined at the upper surface by an array of hemispherical metal structures (18) that act as a mask during an etch to remove substrate material down to the lower surface during formation of the pillars. The pillars are dense and uniform and include a microscale average diameter. The spheres are formed as independent metal spheres or nanoparticles for other applications.
Abstract:
An epitaxy method includes providing (402) an exposed crystalline region of a substrate material. Silicon is epitaxially deposited (404) on the substrate material in a low temperature process wherein a deposition temperature is less than 500 degrees Celsius. A source gas is diluted (408) with a dilution gas with a gas ratio of dilution gas to source gas of less than 1000.
Abstract:
The present invention discloses that under modified chemical vapor deposition (mCVD) conditions an epitaxial silicon film may be formed by exposing a substrate contained within a chamber to a relatively high carrier gas flow rate in combination with a relatively low silicon precursor flow rate at a temperature of less than about 550°C and a pressure in the range of about 10 mTorr - 200 Torr. Furthermore, the crystalline Si may be in situ doped to contain relatively high levels of substitutional carbon by carrying out the deposition at a relatively high flow rate using tetrasilane as a silicon source and a carbon-containing gas such as dodecalmethylcyclohexasilane or tetramethyldisilane under modified CVD conditions.
Abstract:
This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (SfD) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined with ex situ heat treatments in a "divided-dose-anneal-in-between" (DDAB) scheme that avoids the need for tooling capable of performing hot implants.
Abstract:
This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (SfD) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined withex situ heat treatments in a "divided-dose-anneal-in-between" (DDAB) scheme that avoids the need for tooling capable of performing hot implants.