Abstract:
An alternating current (AC) to direct current (DC) power converter may have a connector with a pair of power supply contacts and a pair of data contacts. An electronic device may be connected to the connector of the power converter. The power converter may supply DC power to the electronic device using the power supply contacts. The power converter may include control circuitry that has a resistor coupled across the data contacts. When the electronic device and the power converter are connected to each other, each may advertize to the other that capabilities are present that exceed industry standards. At the same time, standard-compliant discovery operations may be performed to probe the value of the resistance of the resistor that is coupled across the data contacts. When extended capabilities are discovered, extended functions may be performed including accelerated charging functions and data communications functions.
Abstract:
Electronic devices may have batteries that power internal circuitry. A power converter may connect to an input-output port in an electronic device to deliver power to the electronic device. Battery charging circuitry in the electronic device may be used to charge the battery in an electronic device while power is delivered from the power converter. The power converter may have load detection circuitry. When an output load is present, the power converter operates in an active mode and delivers power to the electronic device. When the output load is not present, the power converter enters a low-power standby mode. The electronic device has switching circuitry that periodically either electrically couples or electrically isolates the input-output port from internal circuitry. When the input-output port is isolated, the power converter senses that no output load is present and enters the standby state to conserve power.
Abstract:
A power converter is provided that has an alternating-current (AC) to direct-current (DC) switched- mode power converter circuit that converts alternating- current power into direct-current power for powering an attached electronic device. Power can be conserved by automatically placing the power converter circuit in a low-power standby mode of operation whenever the electronic device is detached from the power converter. A monitoring circuit can be powered by a capacitor or other energy storage element while the power converter is operating in the standby mode. If the monitoring circuit detects an output voltage change that is indicative of attachment of the electronic device or if the storage element needs to be replenished, the monitoring circuit can place the power converter circuit in an active mode of operation.
Abstract:
Electronic devices may have batteries that power internal circuitry. A power converter may connect to an input-output port in an electronic device to deliver power to the electronic device. Battery charging circuitry in the electronic device may be used to charge the battery in an electronic device while power is delivered from the power converter. The power converter may have load detection circuitry. When an output load is present, the power converter operates in an active mode and delivers power to the electronic device. When the output load is not present, the power converter enters a low-power standby mode. The electronic device has switching circuitry that periodically either electrically couples or electrically isolates the input-output port from internal circuitry. When the input-output port is isolated, the power converter senses that no output load is present and enters the standby state to conserve power.
Abstract:
A power converter is provided that has an alternating-current (AC) to direct-current (DC) switched- mode power converter circuit that converts alternating- current power into direct-current power for powering an attached electronic device. Power can be conserved by automatically placing the power converter circuit in a low-power standby mode of operation whenever the electronic device is detached from the power converter. A monitoring circuit can be powered by a capacitor or other energy storage element while the power converter is operating in the standby mode. If the monitoring circuit detects an output voltage change that is indicative of attachment of the electronic device or if the storage element needs to be replenished, the monitoring circuit can place the power converter circuit in an active mode of operation.