Abstract:
PROBLEM TO BE SOLVED: To make it possible to transmit and receive data to and from a desired communication object using a satellite communication system effectively even at the time of increase in communication demand in a time of large scale disaster and the like.SOLUTION: In a control method of first and second satellite communication systems that transmit and receive data between satellite communication earth stations via a communication satellite by control of their respective control earth stations, a satellite communication earth station belonging to the first satellite communication system makes a line connection with a satellite communication earth station belonging to the first satellite communication system via the communication satellite by the record of a radio resource table and a satellite routing table held by it, obtains information necessary to update the radio resource table and information necessary to update the satellite routing table from the control earth station in the second satellite communication system, updates the radio resource table and the satellite routing table (S207), and thereby switches a line connection object to a satellite communication earth station in the second satellite communication system.
Abstract:
PROBLEM TO BE SOLVED: To provide a signal compensation device which is capable of extracting a desired wave free from the influence of nonlinear distortion of a signal amplifier. SOLUTION: A signal compensation device 8 is used for a communication system wherein a superposition signal wherein an IB signal transmitted from a first station and an OB signal different from the IB signal, which is transmitted from a second station, are superposed one over the other is transmitted to the second station from a relay station including TWTA, and the signal compensation device inputs a replica signal being a replica of the OB signal, to a nonlinear compensation model wherein input/output characteristics of an output signal to an input signal show input/output characteristics of TWTA including a linear region and a nonlinear region, to generate a compensated replica signal. Therefore, signal deterioration of the desired wave (the IB signal) is considerably reduced by the signal compensation device 8. The signal compensation device 8 is applicable to an unnecessary wave demodulation system as well as a delay detection system. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To make it possible to quickly and reliably capture a newly selected communication satellite in the case where a satellite communication system is switched due to reasons such as congestion of communication using the particular satellite communication system and in the case where satellites being used and to be used are different.SOLUTION: In a control method of first and second satellite communication systems that transmit and receive data between satellite communication earth stations via a communication satellite by control of their respective control earth stations, if a satellite communication earth station belonging to the first satellite communication system does not get notice of line setting in response to a connection request to the corresponding control earth station, it stops transmission of the connection request, then captures a communication satellite belonging to the second satellite communication system by satellite capture processing, transmits and receives data to and from a satellite communication earth station belonging to the second satellite communication system, distinguishes the first satellite communication system and the second satellite communication system by identification information identifying the first and second satellite communication systems in the satellite capture processing, and switches a line connection object to the satellite communication earth station in the second satellite communication system.
Abstract:
Sistema de medición de posición para un satélite artificial geoestacionario (10), comprendiendo el sistema: dos o más antenas, que incluyen, como mínimo, una primera antena (30) y una segunda antena (31) que reciben, en ubicaciones diferentes una de otra, cualquier señal transmitida por un satélite artificial geoestacionario (10); un medio de almacenamiento, para almacenar una señal de recepción recibida por cada una de las antenas, junto con un tiempo de recepción de la señal de recepción; un medio de proceso de correlación, para calcular una diferencia en el tiempo de recepción de una misma señal entre dicha primera antena (30) y dicha segunda antena (31), realizando un proceso de correlación en la señal de recepción de dicha primera antena (30) y la señal de recepción de dicha segunda antena (31) que ha sido almacenada en dicho medio de almacenamiento; un medio de medición, para medir una primera distancia (R20) entre dicha primera antena (30) y dicho satélite artificial geoestacionario (10) sobre la base del resultado de la medición del tiempo de ida y vuelta de una señal entre dicha primera antena (30) o una antena (40) para medición dispuesta cerca de dicha primera antena (30) y dicho satélite artificial geoestacionario; y un medio de cálculo, para calcular una distancia (R21) entre dicha segunda antena (31) y dicho satélite artificial geoestacionario (10), agregando una segunda distancia (R21b) a la primera distancia (R20) entre dicha primera antena (30) y dicho satélite artificial geoestacionario (10) obtenida mediante dicho medio de medición, siendo calculada la segunda distancia (R21b) a partir de la diferencia en el tiempo de recepción entre dicha primera antena (30) y dicha segunda antena (31) obtenida mediante dicho medio de proceso de correlación, en el que dicho medio de cálculo realiza un primer proceso de interpolación y/o un segundo proceso de interpolación para obtener un valor de la primera distancia (R20) y un valor de la segunda distancia (R21b) al mismo tiempo, siendo el primer proceso de interpolación interpolar una serie de valores de la primera distancia (R20) obtenida mediante una serie de mediciones mediante dicho medio de medición, siendo el segundo proceso de interpolación interpolar una serie de valores de la segunda distancia (R21b) obtenidos mediante el proceso de correlación una serie de veces mediante dicho medio de proceso de correlación.
Abstract:
This spacecraft changes the orbit or orientation of a target object in outer space by irradiating the target object with a laser, the spacecraft having: a laser device for generating a laser; a focusing means for focusing the laser; a detection means for obtaining detection information which includes the distance between the spacecraft and the target object; and an irradiation control means for controlling the focusing means in a manner such that the laser is focused on the target object on the basis of said distance.
Abstract:
A wireless communication device installed in a drone transmits information pertaining to the drone, a relay that flies at a first altitude between the altitude at which the drone can fly and the altitude of a communication satellite receives the information pertaining to the drone from the wireless communication device, the relay transmits the information pertaining to the drone to a ground station via satellite communication using the communication satellite, and the ground station collects information pertaining to the drone from the relay via satellite communication. Thus, it is possible to reduce the risk of line disconnection and collect flight information for the drone in a wide area including a dead zone for mobile communication.
Abstract:
A wireless communication device installed in a drone transmits information pertaining to the drone, a relay that flies at a first altitude between the altitude at which the drone can fly and the altitude of a communication satellite receives the information pertaining to the drone from the wireless communication device, the relay transmits the information pertaining to the drone to a ground station via satellite communication using the communication satellite, and the ground station collects information pertaining to the drone from the relay via satellite communication. Thus, it is possible to reduce the risk of line disconnection and collect flight information for the drone in a wide area including a dead zone for mobile communication.
Abstract:
SATELLITE TIME DISTRIBUTION SYSTEM I_A satellite time distribution system for distributing time information to receiving apparatuses via a geostationary satellite, includes: a reference clock which generates time to be a reference; transmitting means for generating time information by adding an ID to a time obtained from the reference clock, encrypting the time information and transmitting the encrypted time information via the geostationary satellite; receiving means for receiving the time information returned from the geostationary satellite; delay calculating means for measuring a reception time of the time information based on a time of the reference clock, and determining a difference between the time included in the time information and the measured reception time as delay time; and delay time information transmitting means for generating delay time information by adding, to the delay time, a same ID as the ID included in the time information, and transmitting the delay time information to the receiving apparatuses.FIGURE 1.