ADVANCED HIGH EFFICIENCY CRYSTALLINE SOLAR CELL FABRICATION METHOD

    公开(公告)号:SG174289A1

    公开(公告)日:2011-10-28

    申请号:SG2011064573

    申请日:2010-03-19

    Abstract: A method of fabricating a solar cell comprising: providing a semiconducting wafer having a front surface, a back surface, and a background doped region; performing a set of ion implantations of dopant into the semiconducting wafer to form a back alternatingly-doped region extending from the back surface of the semiconducting wafer to a location between the back surface and the front surface, wherein the back doped region comprises laterally alternating first back doped regions and second back doped regions, and wherein the first back doped regions comprise a different charge type than the second back doped regions and the background doped region; and disposing a back metal contact layer onto the back surface of the semiconducting wafer, wherein the back metal contact layer is aligned over the first and second back doped regions and is configured to conduct electrical charge from the first and second back doped regions.

    FORMATION OF SOLAR CELL-SELECTIVE EMITTER USING IMPLANT AND ANNEAL METHOD
    2.
    发明申请
    FORMATION OF SOLAR CELL-SELECTIVE EMITTER USING IMPLANT AND ANNEAL METHOD 审中-公开
    使用植入物和天然方法形成太阳能电池选择性发射体

    公开(公告)号:WO2009152378A1

    公开(公告)日:2009-12-17

    申请号:PCT/US2009/047109

    申请日:2009-06-11

    Abstract: A method of forming a solar cell, the method comprising: providing a semiconducting wafer having a pre-doped region; performing a first ion implantation of a dopant into the semiconducting wafer to form a first doped region over the pre-doped region, wherein the first ion implantation has a concentration-versus-depth profile; and performing a second ion implantation of a dopant into the semiconducting wafer to form a second doped region over the pre-doped region, wherein the second ion implantation has a concentration-versus-depth profile different from that of the first ion implantation, wherein at least one of the first doped region and the second doped region is configured to generate electron-hole pairs upon receiving light, and wherein the first and second ion implantations are performed independently of one another.

    Abstract translation: 一种形成太阳能电池的方法,所述方法包括:提供具有预掺杂区域的半导体晶片; 将掺杂剂的第一离子注入到所述半导体晶片中以在所述预掺杂区域上形成第一掺杂区域,其中所述第一离子注入具有浓度对深度分布; 以及将掺杂剂的第二离子注入到所述半导体晶片中以在所述预掺杂区域上形成第二掺杂区域,其中所述第二离子注入具有与所述第一离子注入不同的浓度对深度分布,其中在 第一掺杂区域和第二掺杂区域中的至少一个被配置为在接收光时产生电子 - 空穴对,并且其中第一和第二离子注入彼此独立地进行。

    PLASMA GRID IMPLANT SYSTEM FOR USE IN SOLAR CELL FABRICATIONS
    3.
    发明申请
    PLASMA GRID IMPLANT SYSTEM FOR USE IN SOLAR CELL FABRICATIONS 审中-公开
    用于太阳能电池制造的等离子体网格植入系统

    公开(公告)号:WO2011005582A1

    公开(公告)日:2011-01-13

    申请号:PCT/US2010/039690

    申请日:2010-06-23

    Abstract: A method of ion implantation comprising: providing a plasma within a plasma region of a chamber; positively biasing a first grid plate, wherein the first grid plate comprises a plurality of apertures; negatively biasing a second grid plate, wherein the second grid plate comprises a plurality of apertures; flowing ions from the plasma in the plasma region through the apertures in the positively-biased first grid plate; flowing at least a portion of the ions that flowed through the apertures in the positively-biased first grid plate through the apertures in the negatively-biased second grid plate; and implanting a substrate with at least a portion of the ions that flowed through the apertures in the negatively-biased second grid plate.

    Abstract translation: 一种离子注入的方法,包括:在室的等离子体区域内提供等离子体; 使第一格栅板向正偏置,其中第一格栅板包括多个孔; 负偏置第二格栅板,其中所述第二格板包括多个孔; 使来自等离子体区域中的等离子体的离子通过正偏置的第一格栅板中的孔流动; 使流经所述正偏置的第一格栅板中的孔的至少一部分离子流过负偏压的第二格栅板中的孔; 以及用至少一部分离子注入衬底,所述离子流过所述负偏压的第二栅格板中的所述孔。

    ADVANCED HIGH EFFICIENCY CRYSTALLINE SOLAR CELL FABRICATION METHOD
    4.
    发明申请
    ADVANCED HIGH EFFICIENCY CRYSTALLINE SOLAR CELL FABRICATION METHOD 审中-公开
    高效高效晶体太阳能电池制造方法

    公开(公告)号:WO2010108151A1

    公开(公告)日:2010-09-23

    申请号:PCT/US2010/028058

    申请日:2010-03-19

    Abstract: A method of fabricating a solar cell comprising: providing a semiconducting wafer having a front surface, a back surface, and a background doped region; performing a set of ion implantations of dopant into the semiconducting wafer to form a back alternatingly-doped region extending from the back surface of the semiconducting wafer to a location between the back surface and the front surface, wherein the back doped region comprises laterally alternating first back doped regions and second back doped regions, and wherein the first back doped regions comprise a different charge type than the second back doped regions and the background doped region; and disposing a back metal contact layer onto the back surface of the semiconducting wafer, wherein the back metal contact layer is aligned over the first and second back doped regions and is configured to conduct electrical charge from the first and second back doped regions.

    Abstract translation: 一种制造太阳能电池的方法,包括:提供具有前表面,后表面和背景掺杂区域的半导体晶片; 执行一组掺杂剂的离子注入到所述半导体晶片中以形成从所述半导体晶片的所述背表面延伸到所述后表面和所述前表面之间的位置的反向交替掺杂区域,其中所述反向掺杂区域包括横向交替的第一 背掺杂区和第二反掺杂区,并且其中第一反掺杂区包括不同于第二反掺杂区和背景掺杂区的电荷类型; 以及将背金属接触层设置在所述半导体晶片的背表面上,其中所述背金属接触层在所述第一和第二后掺杂区域上对准,并且被配置为从所述第一和第二反向掺杂区域导电电荷。

    SOLAR CELL FABRICATION USING IMPLANTATION
    5.
    发明申请
    SOLAR CELL FABRICATION USING IMPLANTATION 审中-公开
    使用植入的太阳能电池制造

    公开(公告)号:WO2009152375A1

    公开(公告)日:2009-12-17

    申请号:PCT/US2009/047102

    申请日:2009-06-11

    Abstract: A solar cell device includes a silicon substrate including a preexisting dopant. A homogeneous lightly doped region is formed on a surface of the silicon substrate to form a junction between the preexisting dopant and the lightly doped region. A heavily doped region is selectively implanted on the surface of the silicon substrate. A seed layer is formed over the heavily doped region. A metal contact is formed over the seed layer. The device can include an anti-reflective coating. In one embodiment, the heavily doped region forms a parabolic shape. The heavily doped regions can each be a width on the silicon substrate a distance in the range 50 to 200 microns. Also, the heavily doped regions can be laterally spaced on the silicon substrate a distance in the range 1 to 3 mm from each other. The seed layer can be a silicide.

    Abstract translation: 太阳能电池器件包括包括预先存在的掺杂剂的硅衬底。 在硅衬底的表面上形成均匀的轻掺杂区域,以形成预先存在的掺杂剂和轻掺杂区域之间的结。 在硅衬底的表面上选择性地注入重掺杂区域。 在重掺杂区域上形成种子层。 在种子层上形成金属接触。 该装置可以包括抗反射涂层。 在一个实施例中,重掺杂区域形成抛物线形状。 重掺杂区域可以各自为硅衬底上的宽度,范围为50至200微米。 此外,重掺杂区域可以在硅衬底上横向间隔开彼此在1至3mm范围内的距离。 种子层可以是硅化物。

    SOLAR CELL FABRICATION WITH FACETING AND ION IMPLANTATION
    6.
    发明申请
    SOLAR CELL FABRICATION WITH FACETING AND ION IMPLANTATION 审中-公开
    具有表面和离子植入的太阳能电池制造

    公开(公告)号:WO2009152365A1

    公开(公告)日:2009-12-17

    申请号:PCT/US2009/047090

    申请日:2009-06-11

    Abstract: Solar cells in accordance with the present invention have reduced ohmic losses. These cells include photo-receptive regions that are doped less densely than adjacent selective emitter regions. The photo-receptive regions contain multiple four-sided pyramids that decrease the amount of light lost to the solar cell by reflection. The smaller doping density in the photo-receptive regions results in less blue light that is lost by electron-hole recombination. The higher doping density in the selective emitter region allows for better contacts with the metallic grid coupled to the multiple emitter regions. Preferably, the selective emitter and photo-receptive regions are both implanted using a narrow ion beam containing the dopants.

    Abstract translation: 根据本发明的太阳能电池具有降低的欧姆损耗。 这些电池包括比相邻选择性发射极区域更密集地掺杂的光接收区域。 光接收区域包含多个四边形金字塔,通过反射减少太阳能电池损失的光量。 在光接受区域中较小的掺杂密度导致较少的蓝光被电子 - 空穴复合损失。 选择性发射极区域中较高的掺杂密度允许与耦合到多个发射极区域的金属栅极的更好的接触。 优选地,使用包含掺杂剂的窄离子束来注入选择性发射极和光接收区。

    APPLICATION SPECIFIC IMPLANT SYSTEM AND METHOD FOR USE IN SOLAR CELL FABRICATIONS
    7.
    发明申请
    APPLICATION SPECIFIC IMPLANT SYSTEM AND METHOD FOR USE IN SOLAR CELL FABRICATIONS 审中-公开
    应用特定的植入系统和用于太阳能电池的方法

    公开(公告)号:WO2009152368A1

    公开(公告)日:2009-12-17

    申请号:PCT/US2009/047094

    申请日:2009-06-11

    Abstract: Solar cells and other semiconductor devices are fabricated more efficiently and for less cost using an implanted doping fabrication system. A system for implanting a semiconductor substrate includes an ion source (such as a single-species delivery module), an accelerator to generate from the ion source an ion beam having an energy of no more than 150kV, and a beam director to expose the substrate to the beam. In one embodiment, the ion source is single-species delivery module that includes a single-gas delivery element and a single-ion source. Alternatively, the ion source is a plasma source used to generate a plasma beam. The system is used to fabricate solar cells having lightly doped photo-receptive regions and more highly doped grid lines. This structure reduces the formation of "dead layers" and improves the contact resistance, thereby increasing the efficiency of a solar cell.

    Abstract translation: 使用植入式掺杂制造系统,更有效地制造太阳能电池和其它半导体器件并且以较低成本制造。 用于植入半导体衬底的系统包括离子源(例如单种传递模块),从离子源产生具有不超过150kV的能量的离子束的加速器和用于暴露衬底的束导向器 到梁。 在一个实施方案中,离子源是单物质输送模块,其包括单气体输送元件和单离子源。 或者,离子源是用于产生等离子体束的等离子体源。 该系统用于制造具有轻掺杂的光接收区域和更高掺杂的栅格线的太阳能电池。 该结构减少了“死层”的形成,提高了接触电阻,提高了太阳能电池的效率。

    SOLAR CELL FABRICATION USING IMPLANTATION
    8.
    发明公开
    SOLAR CELL FABRICATION USING IMPLANTATION 审中-公开
    植入二手太阳能电池生产

    公开(公告)号:EP2304803A1

    公开(公告)日:2011-04-06

    申请号:EP09763663.3

    申请日:2009-06-11

    Abstract: A solar cell device includes a silicon substrate including a preexisting dopant. A homogeneous lightly doped region is formed on a surface of the silicon substrate to form a junction between the preexisting dopant and the lightly doped region. A heavily doped region is selectively implanted on the surface of the silicon substrate. A seed layer is formed over the heavily doped region. A metal contact is formed over the seed layer. The device can include an anti-reflective coating. In one embodiment, the heavily doped region forms a parabolic shape. The heavily doped regions can each be a width on the silicon substrate a distance in the range 50 to 200 microns. Also, the heavily doped regions can be laterally spaced on the silicon substrate a distance in the range 1 to 3 mm from each other. The seed layer can be a silicide.

    ADVANCED HIGH EFFICIENCY CRYSTALLINE SOLAR CELL FABRICATION METHOD
    9.
    发明公开
    ADVANCED HIGH EFFICIENCY CRYSTALLINE SOLAR CELL FABRICATION METHOD 审中-公开
    VERFAHREN ZUR HERSTELLUNG EINER KRISTALLSOLARZELLE MITERHÖHTEREFFIZIENZ

    公开(公告)号:EP2409331A1

    公开(公告)日:2012-01-25

    申请号:EP10754209.4

    申请日:2010-03-19

    Abstract: A method of fabricating a solar cell comprising: providing a semiconducting wafer having a front surface, a back surface, and a background doped region; performing a set of ion implantations of dopant into the semiconducting wafer to form a back alternatingly-doped region extending from the back surface of the semiconducting wafer to a location between the back surface and the front surface, wherein the back doped region comprises laterally alternating first back doped regions and second back doped regions, and wherein the first back doped regions comprise a different charge type than the second back doped regions and the background doped region; and disposing a back metal contact layer onto the back surface of the semiconducting wafer, wherein the back metal contact layer is aligned over the first and second back doped regions and is configured to conduct electrical charge from the first and second back doped regions.

    Abstract translation: 一种制造太阳能电池的方法,包括:提供具有前表面,背表面和背景掺杂区域的半导体晶片; 执行一组掺杂剂的离子注入到所述半导体晶片中以形成从所述半导体晶片的所述背表面延伸到所述后表面和所述前表面之间的位置的反向交替掺杂区域,其中所述反向掺杂区域包括横向交替的第一 背掺杂区和第二反掺杂区,并且其中第一反掺杂区包括与第二反掺杂区和背景掺杂区不同的电荷类型; 以及将背金属接触层设置在所述半导体晶片的背表面上,其中所述背金属接触层在所述第一和第二背掺杂区域上对准,并且被配置为从所述第一和第二后掺杂区域导电电荷。

    SOLAR CELL FABRICATION WITH FACETING AND ION IMPLANTATION
    10.
    发明公开
    SOLAR CELL FABRICATION WITH FACETING AND ION IMPLANTATION 审中-公开
    带面和离子注入太阳能电池生产

    公开(公告)号:EP2319087A1

    公开(公告)日:2011-05-11

    申请号:EP09763653.4

    申请日:2009-06-11

    Abstract: Solar cells in accordance with the present invention have reduced ohmic losses. These cells include photo-receptive regions that are doped less densely than adjacent selective emitter regions. The photo-receptive regions contain multiple four-sided pyramids that decrease the amount of light lost to the solar cell by reflection. The smaller doping density in the photo-receptive regions results in less blue light that is lost by electron-hole recombination. The higher doping density in the selective emitter region allows for better contacts with the metallic grid coupled to the multiple emitter regions. Preferably, the selective emitter and photo-receptive regions are both implanted using a narrow ion beam containing the dopants.

Patent Agency Ranking