Abstract:
A mobile platform efficiently processes sensor data, including image data, using distributed processing in which latency sensitive operations are performed on the mobile platform, while latency insensitive, but computationally intensive operations are performed on a remote server. The mobile platform acquires sensor data, such as image data, and determines whether there is a trigger event to transmit the sensor data to the server. The trigger event may be a change in the sensor data relative to previously acquired sensor data, e.g., a scene change in an image. When a change is present, the sensor data may be transmitted to the server for processing. The server processes the sensor data and returns information related to the sensor data, such as identification of an object in an image or a reference image or model. The mobile platform may then perform reference based tracking using the identified object or reference image or model.
Abstract:
The present invention comprises a method of communicating background noise comprising the steps of transmitting background noise, blanking subsequent background noise data rate frames used to communicate the background noise, receiving the background noise and updating the background noise.
Abstract:
Methods, apparatuses, systems, and computer-readable media for taking great pictures at an event or an occasion. The techniques described in embodiments of the invention are particularly useful for tracking an object, such as a person dancing or a soccer ball in a soccer game and automatically taking pictures of the object during the event. The user may switch the device to an Event Mode that allows the user to delegate some of the picture-taking responsibilities to the device during an event. In the Event Mode, the device identifies objects of interest for the event. Also, the user may select the objects of interest from the view displayed by the display unit. The device may also have pre-programmed objects including objects that the device detects. In addition, the device may also detect people from the users' social networks by retrieving images from social networks like Facebook® and Linkedln®.
Abstract:
A multi-user augmented reality (AR) system operates without a previously acquired common reference by generating a reference image on the fly. The reference image is produced by capturing at least two images of a planar object and using the images to determine a pose (position and orientation) of a first mobile platform with respect to the planar object. Based on the orientation of the mobile platform, an image of the planar object, which may be one of the initial images or a subsequently captured image, is warped to produce the reference image of a front view of the planar object. The reference image may be produced by the mobile platform or by, e.g., a server. Other mobile platforms may determine their pose with respect to the planar object using the reference image to perform a multi-user augmented reality application.
Abstract:
A database for object recognition is modified based on feedback information received from a mobile platform. The feedback information includes information with respect to an image of an object captured by the mobile platform. The feedback information, for example, may include the image, features extracted from the image, a confidence level for the features, posterior probabilities of the features belonging to an object in the database, GPS information, and heading orientation information. The feedback information may be used to improve the database pruning, add content to the database or update the database compression efficiency. The information feedback to the server by the mobile platform may be determined based on a search of a portion of the database performed by the mobile platform using features extracted from a captured query image.
Abstract:
In a particular embodiment, a method is disclosed that includes receiving a feedback message at a transmitter, the feedback message including an indication of a magnitude of congestion and a sustainable rate of data transmission at a receiver. The method also includes determining a decongestion rate and a decongestion time based on at least one of the sustainable rate of data transmission and the magnitude of congestion when the magnitude of congestion satisfies a threshold value. The method further includes sending data at the decongestion rate from the transmitter to the receiver for the decongestion time. The method also includes adjusting a data transmission rate at the transmitter to the sustainable rate of data transmission after the decongestion time is ended.
Abstract:
A voice decoder configured to receive a sequence of frames, each of the frames having voice parameters. The voice decoder includes a speech generator that generates speech from the voice parameters. A frame erasure concealment module is configured to reconstruct the voice parameters for a frame erasure in the sequence of frames from the voice parameters in one of the previous frames and the voice parameters in one of the subsequent frames.
Abstract:
A multi-user augmented reality (AR) system operates without a previously acquired common reference by generating a reference image on the fly. The reference image is produced by capturing at least two images of a planar object and using the images to determine a pose (position and orientation) of a first mobile platform with respect to the planar object. Based on the orientation of the mobile platform, an image of the planar object, which may be one of the initial images or a subsequently captured image, is warped to produce the reference image of a front view of the planar object. The reference image may be produced by the mobile platform or by, e.g., a server. Other mobile platforms may determine their pose with respect to the planar object using the reference image to perform a multi-user augmented reality application.
Abstract:
Adaptive De-Jitter Buffer for Voice over IP (VoIP) for packet switched communications. The de-jitter buffer methods and apparatus presented modify the playback of packets dependent upon whether silence periods are detected inter-sentence or intra-sentence to optimize voice quality in a communication system. In one example, a de-jitter buffer determines the length of at least one silence period associated with a plurality of received packets and determines a time to transmit a portion of the packets based on the determined length of the silence period. In another example, a silence characterizer unit performs this function.
Abstract:
In one embodiment, the present invention comprises a vocoder having at least one input and at least one output, an encoder comprising a filter having at least one input operably connected to the input of the vocoder and at least one output, a decoder comprising a synthesizer having at least one input operably connected to the at least one output of the encoder, and at least one output operably connected to the at least one output of the vocoder, wherein the decoder comprises a memory and the decoder is adapted to execute instructions stored in the memory comprising phase matching and time-warping a speech frame.