Abstract:
In multi-carrier transmission systems using, for example, DMT, it is known to recover a receiver sampling clock from a reserved carrier, a pilot carrier, having a fixed phase. A sampling clock oscillator in a receiver is then phase-locked to the pilot carrier. Multi-carrier receivers, such as DMT receivers, are normally equipped with a FFT processor. A complex number representing the pilot carrier is then available from the FFT processor output. If a FFT processor is not available, a one-frequency DFT processor can be provided to produce a complex estimate of the pilot carrier. In a DMT system, frame synchronisation is handled separately from sampling clock synchronisation, although the two processes are intimately related and frame synchronisation must be acquired before sampling clock synchronisation.
Abstract:
In multi-carrier transmission systems using, for example, DMT, it is known to recover a receiver sampling clock from a reserved carrier, a pilot carrier, having a fixed phase. A sampling clock oscillator in a receiver is then phase-locked to the pilot carrier. Multi-carrier receivers, such as DMT receivers, are normally equipped with a FFT processor. A complex number representing the pilot carrier is then available from the FFT processor output. If a FFT processor is not available, a one-frequency DFT processor can be provided to produce a complex estimate of the pilot carrier. In a DMT system, frame synchronisation is handled separately from sampling clock synchronisation, although the two processes are intimately related and frame synchronisation must be acquired before sampling clock synchronisation.