Abstract:
The invention provides an oxygen Andrussow process for production of hydrogen cyanide from a methane-containing feedstock such as natural gas in the presence of oxygen and ammonia over a platinum catalyst, wherein the production of byproduct organonitrile impurities, such as acrylonitrile, is reduced. Limiting the content of C2 hydrocarbons in the methane feedstock in the oxygen Andrussow process, in contrast to the air Andrussow process, has been found to reduce formation of organonitriles, such as acrylonitrile. The organonitrile impurities can require additional processing for removal cause fouling of equipment, and can also contribute to hydrogen cyanide polymerization. Reduction of C2+ hydrocarbon levels to less than 2 wt %, or 1 wt %, or less than 0.1 wt %, in the methane can provide an improved yield of higher purity HCN. Reduction of C2+ hydrocarbon levels also solves the problem of polymer buildup in process equipment, reducing downtime required for cleaning when higher C2+ hydrocarbon levels are present in the reaction feed.
Abstract:
The invention relates to an ionic liquid composition and a method for preparing the ionic liquid. The ionic liquid comprises a cation containing the Formula I, as herein disclosed, and wherein: n is 2, R1 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R2 may form a heterocyclic ring, and R2 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R1 may form a heterocyclic ring, and R3 is selected from the group consisting of hydrogen and C1-C12 alkyl, and wherein R1 and R2 are not simultaneously selected from hydrogen.
Abstract:
An improved process for the hydrolysis of nylon polymer is herein disclosed using ionic liquids and optionally one equivalent of sulfuric acid per amide residue of the polymer. The process provides for a simplified means for separation of the hydrolyzed polyamide constituent monomers.
Abstract:
Use of ionic liquids as solvents in base-catalysed chemical reactions wherein the ionic liquid is composed of at least one species of cation and at least one species of anion, characterised in that a cation of the ionic liquid comprises a positively charge moiety and a basic moiety, and further wherein such ionic liquids may be used as promoters or catalysts for the chemical reactions.
Abstract:
Use of ionic liquids as solvents in base-catalysed chemical reactions wherein the ionic liquid is composed of at least one species of cation and at least one species of anion, characterized in that a cation of the ionic liquid comprises a positively charge moiety and a basic moiety, and further wherein such ionic liquids may be used as promoters or catalysts for the chemical reactions.
Abstract:
An improved process for the hydrolysis of nylon polymer is herein disclosed using ionic liquids and optionally one equivalent of sulfuric acid per amide residue of the polymer. The process provides for a simplified means for separation of the hydrolyzed polyamide constituent monomers.
Abstract:
A method for the treatment of a lignin-containing material such as wood pulp, bagasse and other plant-derived materials, comprising contacting the lignin-containing material with an ionic liquid to extract the lignin therefrom. The ionic liquid is suitably a substituted or unsubstituted imidazolium, triazolium, pyrazolium, pyridinium, pyrrolidinium, piperidinium, ammonium, phosphonium or sulfonium salt of a substituted or unsubstituted aryl sulfonate, such as an ionic liquid salt of a xylene sulfonate.
Abstract:
The invention relates to an ionic liquid composition and a method for preparing the ionic liquid. The ionic liquid comprises a cation containing the Formula I, as herein disclosed, and wherein: n is 2, R1 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R2 may form a heterocyclic ring, and R2 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R1 may form a heterocyclic ring, and R3 is selected from the group consisting of hydrogen and C1-C12 alkyl, and wherein R1 and R2 are not simultaneously selected from hydrogen.
Abstract:
The invention relates to an ionic liquid composition and a method for preparing the ionic liquid. The ionic liquid comprises a cation containing the Formula I, as herein disclosed, and wherein: n is 2, R1 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R2 may form a heterocyclic ring, and R2 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R1 may form a heterocyclic ring, and R3 is selected from the group consisting of hydrogen and C1-C12 alkyl, and wherein R1 and R2 are not simultaneously selected from hydrogen.
Abstract:
The invention relates to an ionic liquid composition and a method for preparing the ionic liquid. The ionic liquid comprises a cation containing the Formula I, as herein disclosed, and wherein: n is 1 or 2, R1 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R2 may form a heterocyclic ring, and R2 is selected from the group consisting of: H, C1-C12 alkyl, aryl or together with R1 may form a heterocyclic ring, and R3 is selected from the group consisting of hydrogen and C1-C12 alkyl, wherein if n is 1, then R3 is C1-C12 alkyl; and wherein R1 and R2 are not simultaneously selected from hydrogen. The method for the preparation of the ionic liquid composition provided herein starts with at least one N-substitution of the compound of Formula II, as herein disclosed, and wherein: n is 1 or 2, R3 is selected from the group consisting of hydrogen and C1-C12 alkyl, wherein if n is 1, then R3 is C1-C12 alkyl. Further provided is a use of the ionic liquid in a chemical method including at least a method for electrochemical oxidation.