Abstract:
PROBLEM TO BE SOLVED: To provide an improved digital to analog converter circuit of an LCD panel column driver. SOLUTION: The digital to analog converter (DAC) circuit operates over an upper range and a lower range. An upper voltage node is designated AVDD; a middle voltage node is designated HVDD; and a lower voltage node designated ground. An upper DAC stage has at least one NMOS transistors that produces an output to an upper range output node when the output is in the upper range. A lower DAC stage has at least one PMOS transistors that produces an output to a lower range output node when the output is in the lower range. A body bias control circuit couples the body of the upper NMOS transistor to a voltage source equal to HVDD-Vbe and connects the body of the lower PMOS transistor to voltage source equal to HVDD+Vbe. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To solve a problem of stereo sound playback in at least 5.1 speakers system and resolve scalability issues in standpoints of calculation and memory use. SOLUTION: The invention adopts a multi-band processing to allow to handle different frequency bands separately. This achieves better channel separation when more than one dominant signals exist in an arbitrary time. Since chances in which a dominant band falls into different frequency bands as the number of the frequency bands increases, uncertainness in decoding decreases. A problem of a plurality of dominant signals is decreased by implementing slow attenuation of surround signal when one dominant central signal exists and vice versa. This is based on an assumption that not all dominant signals are always active. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
In an embodiment, to deter or delay counterfeiting/cloning of a replacement component of a host device, the replacement component is provided with a code value. The code value is generated from a value of at least one physical parameter of the replacement component and is stored on the replacement component. The host device determines whether the replacement component is authentic if the stored code value matches a reference code value.
Abstract:
A method includes: displaying, an image on a display by sequentially displaying a plurality of frames of the image, the plurality of frames including a first frame and second frame; performing a first noise sampling scan at a plurality of frequencies at a first time location within a first frame; determining a first frequency from the plurality of frequencies with the lowest noise; performing a first mutual sensing scan at the first frequency; performing, a second noise sampling scan at the plurality of frequencies at a second time location within a second frame of the plurality of frames, the second time location being a different frame location than the first time location; determining a second frequency from the plurality of frequencies with the lowest noise, the second frequency being different from the first frequency; and performing, a second mutual sensing scan at the second frequency.
Abstract:
A bridge rectifier is controlled by control circuitry to act a “regtifier” which both regulates and rectifies without the use of a traditional voltage regulator. To accomplish this, the gate voltages of transistors of the bridge that are on during a given phase may be modulated to dissipate excess power. Gate voltages of transistors of the bridge that are off during the given phase may alternatively or additionally be modulated to dissipate excess power. The regtifier may act as two half-bridges that each power a different voltage converter, with those voltage converters powering a battery. The voltage converters may be switched capacitor voltage converters that switch synchronously with switching of the two half-bridges as they perform rectification.
Abstract:
An over-voltage protection circuit and methods of operation are provided. In one embodiment, a method includes monitoring a voltage at an output of a rectifier, a voltage at an output of a voltage regulator, or a combination thereof. The method further includes determining the over-voltage condition based on the monitoring; and in response to determining the over-voltage condition, regulating the voltage at the output of the rectifier in accordance with a voltage difference between the voltage at the output of the rectifier and the voltage at the output of the voltage regulator.
Abstract:
A method includes: displaying, an image on a display by sequentially displaying a plurality of frames of the image, the plurality of frames including a first frame and second frame; performing a first noise sampling scan at a plurality of frequencies at a first time location within a first frame; determining a first frequency from the plurality of frequencies with the lowest noise; performing a first mutual sensing scan at the first frequency; performing, a second noise sampling scan at the plurality of frequencies at a second time location within a second frame of the plurality of frames, the second time location being a different frame location than the first time location; determining a second frequency from the plurality of frequencies with the lowest noise, the second frequency being different from the first frequency; and performing, a second mutual sensing scan at the second frequency.
Abstract:
A method for operating an electronic device, the method including: displacing a rollable touchscreen to a first position along a first direction, a first side of the rollable touchscreen being mounted in a housing, the rollable touchscreen being configured to be rolled into or unrolled out of the housing along the first direction, detecting an active electrode at a first location on the rollable touchscreen, the active electrode being mounted in the housing, and determining the first position of the rollable touchscreen based on the first location, the first positing being indicative of a fractional amount of the rollable touchscreen outside the housing.
Abstract:
A wireless power circuit operable in transceiver mode and in Q-factor measurement mode includes a bridge rectifier having first and second inputs coupled to first and second terminals of a coil, and an output coupled to a rectified node. An excitation circuit coupled to the first terminal, in Q-factor measurement mode, drives the coil with a pulsed signal. A protection circuit couples the first terminal to a first node when in Q-factor measurement mode and decouples the first terminal when in transceiver mode. A controller causes the bridge rectifier to short the first and second terminals to ground during Q-factor measurement mode. A sensing circuit amplifies voltage at the first node to produce an output voltage, and in response to the voltage at the first node rising to cross a rising threshold voltage, digitizes the output voltage. The digitized output voltage is used in calculating a Q-factor of the coil.