Abstract:
An antenna system (205) includes an antenna structure (215), a receiver (220), and an antenna system controller (225). The antenna structure includes an arrangement of antennas (237), a signal combiner (240), and a switching matrix (235). The arrangement of antennas is designed to have a set of antenna element separations that are optimized to provide lowest correlation coefficients of intercepted radio signals for a corresponding set of electromagnetic environment types that vary from a very low density scattering environment to a maximum density scattering environment. The antennas (230), (231), (232), (233), (234) in the antenna arrangement each include at least one element that has a common polarization. There is at least one antenna that is a dual polarized antenna. The antenna system selects an antenna element pair that corresponds to the environment type which it is operating and thereby receives a best combined signal.
Abstract:
A technique is used in a wideband wireless communication system (100). In some embodiments available channels are determined (310) and one is selected (315) for assignment to each of a set of communication units based on a relative frequency path loss for each available channel. In some embodiments a communication unit is assigned (505) a channel selected from among available channels and a relative signal loss parameter of the communication unit, such as transmit power, is adjusted (510), based on a relative frequency path loss determined from the channel frequency of the assigned channel. In other embodiments, transmit information is split (705) into a plurality of data streams, each characterized by an associated relative signaling sensitivity, and each data stream is assigned (715) to one of a plurality of the transmit channels, wherein data streams are assigned channels of decreasing channel frequencies in order of decreasing associated relative signaling sensitivities of the data streams.
Abstract:
An antenna system (205) includes an antenna structure (215), a receiver (220), and an antenna system controller (225). The antenna structure includes an arrangement of antennas (237), a signal combiner (240), and a switching matrix (235). The arrangement of antennas is designed to have a set of antenna element separations that are optimized to provide lowest correlation coefficients of intercepted radio signals for a corresponding set of electromagnetic environment types that vary from a very low density scattering environment to a maximum density scattering environment. The antennas (230), (231), (232), (233), (234) in the antenna arrangement each include at least one element that has a common polarization. There is at least one antenna that is a dual polarized antenna. The antenna system selects an antenna element pair that corresponds to the environment type which it is operating and thereby receives a best combined signal.
Abstract:
A subscriber device (10) includes one or more sensors (102) for measuring an object electromagnetic characteristic, such as conductivity, permittivity or permeability. A controller (104) stores the object electromagnetic parameter in memory (106) and, operating in accordance with a performance enhancement routine stored in the memory (106), enhances operation of the subscriber device (10) in accordance with the electromagnetic parameter. The controller (104) may do this by adjusting the power of an amplifier (112), the frequency of a synthesizer (114) or the impedance of an antenna (110). A software program controlling the subscriber device and a corresponding method are described.
Abstract:
A method (20 or 500) and system (200) for method for computing wireless signal diffraction in a three-dimensional space can include the steps of selecting at least a source point, finding (19) sinkpoints that fail to have a line-of-sight path to the source point and storing the sinkpoints found, placing (21) diffraction points on all edges of a three-dimensional geometry, and building (24) a visibility matrix based on weighted paths for all source points and all sink points. The method can further include applying (25) a path finding algorithm on the visibility matrix for each sink point to all source points and storing store optimal paths for each source point to all sink points if they exist. The method can further include determining (23) if a last source point is selected before building the visibility matrix.
Abstract:
A system (170) and method (300) for ray launching is provided. The system can include a transmitter (110) for successively launching a plurality of rays, and a receiver (120) for receiving transmission rays and reflection rays. A controller (141) can be included for selectively adjusting an angular spacing and eliminating rays in successive launches to focus an energy on the receiver. A method (430) of terminating rays for reducing computational complexity is provided. A method (340) for ray weighting for increasing a computational speed of ray propagation is provided. In one aspect, a quality of service (108) can be determined at the receiver based on ray propagation.
Abstract:
A technique is used in a wideband wireless communication system (100). In some embodiments available channels are determined (310) and one is selected (315) for assignment to each of a set of communication units based on a relative frequency path loss for each available channel. In some embodiments a communication unit is assigned (505) a channel selected from among available channels and a relative signal loss parameter of the communication unit, such as transmit power, is adjusted (510), based on a relative frequency path loss determined from the channel frequency of the assigned channel. In other embodiments, transmit information is split (705) into a plurality of data streams, each characterized by an associated relative signaling sensitivity, and each data stream is assigned (715) to one of a plurality of the transmit channels, wherein data streams are assigned channels of decreasing channel frequencies in order of decreasing associated relative signaling sensitivities of the data streams.
Abstract:
A communication device (10) and a corresponding method are arranged for changing the radiation pattern of an antenna (14), where the radiation pattern of the antenna (14) is set to a half-space pattern if the communication device (10) is in close proximity to an object. A reflector (18) is activated to produce the half space radiation pattern. The reflector (18) is deactivated to produce the full space pattern. A switching device (26) determines the state of the reflector (18). A sensing and control device (23) controls the state of the switching device (26).
Abstract:
A communication device (10) and a corresponding method are arranged for changing the radiation pattern of an antenna (14), where the radiation pattern of the antenna (14) is set to a half-space pattern if the communication device (10) is in close proximity to an object. A reflector (18) is activated to produce the half space radiation pattern. The reflector (18) is deactivated to produce the full space pattern. A switching device (26) determines the state of the reflector (18). A sensing and control device (23) controls the state of the switching device (26).
Abstract:
A system (100) and method (400) for improving Radio Frequency (RF) Antenna Simulation is provided. The method can include determining (402) a proximity of an antenna (250) to a scattering structure (210), determining (410) a switching distance to the scattering structure that establishes when to switch the antenna on (416) and off (418) from a composite antenna pattern to a free space antenna pattern, and predicting RF coverage of the antenna responsive to the switching. The switching distance can be a function of a material type and a surface geometry of the scattering structure and a wavelength of the antenna. The method can also include evaluating a sensory mismatch in the antenna, and using a composite antenna pattern corresponding to the sensory mismatch.