Abstract:
An energy storage device is provided. The energy storage device includes a cathode material and a separator in electrical communication with the cathode material. The cathode material includes zinc. The separator has a first surface that defines at least a portion of a first chamber, and a second surface that defines a second chamber. The first chamber is in ionic communication with the second chamber through the separator. The separator includes an alkali-metal-ion conducting material and a toughening material. A method for operating the energy storage device is also provided. Furthermore, an energy storage system including the energy storage device is provided.
Abstract:
An energy storage device is provided that includes a cathodic material in electrical communication with a separator. The cathodic material includes copper. The separator has a first surface that defines at least a portion of a first chamber, and a second surface that defines a second chamber. The first chamber is in ionic communication with the second chamber through the separator. The separator has at least one of the following attributes: the separator is a composite of alumina and a rare earth oxide, or the separator is a composite of alumina and a transition metal oxide, or the separator comprises a plurality of grains, and the grains define grain boundaries that define interstitial spaces, and the interstitial spaces defined by the grain boundaries are free of sodium aluminate prior to an initial electrical charging of the energy storage device or are free of the cathodic material after the initial electrical charging of the energy storage device, or the separator comprises a continuous phase of an alkali-metal-ion conductor and a continuous phase of a ceramic oxygen-ion conductor. Various systems and methods are provided, also.
Abstract:
Methods are provided to inhibit corrosion of metals in contact with aqueous systems such as cooling water systems. In accordance with the methods, a hydroxyacid compound and orthophosphates are used to treat the system. Additionally, an adjuvant including poly(epoxysuccinic acids), an additional hydroxy acid, and a polycarboxylic acid, may be added to the system water.
Abstract:
A composition includes a cathodic material comprising a support structure. The support structure includes copper and zinc, and has less than 1 weight percent of aluminum, tin or aluminum and tin. The support structure may be part of an energy storage device. In another aspect, a method is provided that includes forming brass from zinc powder and copper powder in the presence of a sodium electrolyte. In one aspect, an electrochemical cell is loaded with copper and zinc, the electrochemical cell is heated, and at least one charge/discharge cycle of the electrochemical cell is performed. Alpha brass is converted to gamma brass in presence of zinc arid sodium. Methods of producing and operating an energy storage device are also provided.
Abstract:
A composition is provided that includes a ternary electrolyte having a melting point greater than about 150 degree Celsius. The ternary electrolyte includes an alkali metal halide, an aluminum halide and a zinc halide. The amount of the zinc halide present in the ternary electrolyte is greater than about 20 mole percent relative to an amount of the aluminum halide. An energy storage device including the composition is provided. A system and a method are also provided.
Abstract:
An energy storage device (100) is provided that includes a cathodic material in electrical communication with a separator. The cathodic material includes copper. The separator (104) has a first surface (106) that defines at least a portion of a first chamber (110), and a second surface (108) that defines a second chamber (112). The first chamber is in ionic communication with the second chamber through the separator. The separator has at least one of the following attributes: the separator is a composite of alumina and a rare earth oxide, or the separator is a composite of alumina and a transition metal oxide, or the separator comprises a plurality of grains, and the grains define grain boundaries that define interstitial spaces, and the interstitial spaces defined by the grain boundaries are free of sodium aluminate prior to an initial electrical charging of the energy storage device or are free of the cathodic material after the initial electrical charging of the energy storage device, or the separator comprises a continuous phase of an alkali-metal-ion conductor and a continuous phase of a ceramic oxygen-ion conductor.