Simplified title:用于透过聚合物基质静电纺纱而产生奈米纤维的设备之集电极及包括此集电极之设备 COLLECTING ELECTRODE OF THE DEVICE FOR PRODUCTION OF NANOFIBRES THROUGH ELECTROSTATIC SPINNING OF POLYMER MATRICES, AND DEVICE COMPRISING THIS COLLECTING ELECTRODE
Abstract in simplified Chinese:本发明提供一种用于透过聚合物基质静电纺纱而产生奈米纤维的设备之集电极,其原理在于其包括单点电荷系统。本发明进一步提供一种关于用于在该集电极(5)与至少一个纺纱电极(4)间之静电纺纱电场中透过聚合物基质静电纺纱而产生奈米纤维的设备,其原理在于其包括含有单点电荷系统的集电极(5)。
Abstract:
The invention relates to a method for production of polymeric nanofibers, in which polymeric nanofibers are created due to the action of force of an electric field on solution or melt of a polymer, which is located on the surface of a spinning electrode, whereby the electric field for electrostatic spinning is created alternately between the spinning electrode (1), to which is supplied alternating voltage, and ions (30, 31) of air and/or gas generated and/or supplied to proximity of the spinning electrode (1), whereby according to the phase of the alternating voltage on the spinning electrode (1) polymeric nanofibers with an electric charge of opposite polarity and/or with segments with an electric charge of opposite polarity are created, which after their creation cluster together under the influence of the electrostatic forces into linear formation in the form of a tow or a band, which moves freely in space in direction of gradient of the electric fields away from the spinning electrode (1). The invention further relates to a linear formation from polymeric nanofibers fabricated by this method.
Abstract:
A method, system, and resulting linear fibrous formation are provided wherein a supporting linear formation defines a core that is transported through a spinning chamber. A coating of polymeric nanofibers enveloping the supporting linear formation in the spinning chamber. The coating of polymeric nanofibers comprises a flat stripe wound around the core into a helical form, the flat stripe created from a hollow electrically neutral nanofibrous plume generated in a spinning space above a spinning electrode during spinning by AC electric voltage in the spinning chamber.
Abstract:
The invention relates to a method for production of polymeric nanofibers, in which polymeric nanofibers are created due to the action of force of an electric field on solution or melt of a polymer, which is located on the surface of a spinning electrode, whereby the electric field for electrostatic spinning is created alternately between the spinning electrode (1), to which is supplied alternating voltage, and ions (30, 31) of air and/or gas generated and/or supplied to proximity of the spinning electrode (1), whereby according to the phase of the alternating voltage on the spinning electrode (1) polymeric nanofibers with an electric charge of opposite polarity and/or with segments with an electric charge of opposite polarity are created, which after their creation cluster together under the influence of the electrostatic forces into linear formation in the form of a tow or a band, which moves freely in space in direction of gradient of the electric fields away from the spinning electrode (1). The invention further relates to a linear formation from polymeric nanofibers fabricated by this method.
Abstract:
A spinning electrode for production of polymeric nanofibres by electric or electrostatic spinning of a polymer solution or melt includes a conduit for the polymer solution or melt. A spinning surface on the conduit is defined by a face of the conduit or an extension on the conduit. A screw shaft is disposed within an inner space of the conduit, wherein the screw shaft and an inner wall of the conduit form a screw conveyor. The screw shaft has a lower end that projects out from the conduit and is connected to a hub of a magnetic coupling.
Abstract:
The invention relates to a spinning electrode (1) for producing polymeric nanofibers by electrospinning of a polymer solution or polymer melt, containing an inlet pipe (2) of the polymer solution or melt, which ends on its top face (3), whereby around at least a part of the mouth (20) on the top face of the inlet pipe (2) of the polymer solution or melt is formed a spinning surface (4) rounded downwards below the mouth (20), whereby the spinning surface (4) continues as a collecting surface (6) on the outer surface of the inlet pipe (2) of the polymer solution or melt.The invention also relates to a device for producing nanofibers by electrospinning of a polymer solution or melt, which is equipped with at least one spinning electrode (1) according to the invention.In addition, the invention relates to a method for producing nanofibers by electrospinning of a polymer solution or melt, which is based on using the spinning electrode according to the invention.
Abstract:
The invention relates to a spinning electrode (1) for producing polymeric nanofibers by electrospinning of a polymer solution or polymer melt, containing an inlet pipe (2) of the polymer solution or melt, which ends on its top face (3), whereby around at least a part of the mouth (20) on the top face of the inlet pipe (2) of the polymer solution or melt is formed a spinning surface (4) rounded downwards below the mouth (20), whereby the spinning surface (4) continues as a collecting surface (6) on the outer surface of the inlet pipe (2) of the polymer solution or melt.The invention also relates to a device for producing nanofibers by electrospinning of a polymer solution or melt, which is equipped with at least one spinning electrode (1) according to the invention.In addition, the invention relates to a method for producing nanofibers by electrospinning of a polymer solution or melt, which is based on using the spinning electrode according to the invention.
Abstract:
A spinning electrode for production of polymeric nanofibres by electric or electrostatic spinning of a polymer solution or melt includes a conduit for the polymer solution or melt. A spinning surface on the conduit is defined by a face of the conduit or an extension on the conduit. A screw shaft is disposed within an inner space of the conduit, wherein the screw shaft and an inner wall of the conduit form a screw conveyor. The screw shaft has a lower end that projects out from the conduit and is connected to a hub of a magnetic coupling.
Abstract:
A method, system, and resulting linear fibrous formation are provided wherein a supporting linear formation defines a core that is transported through a spinning chamber. A coating of polymeric nanofibers enveloping the supporting linear formation in the spinning chamber. The coating of polymeric nanofibers comprises a flat stripe wound around the core into a helical form, the flat stripe created from a hollow electrically neutral nanofibrous plume generated in a spinning space above a spinning electrode during spinning by AC electric voltage in the spinning chamber.
Abstract:
A method and a device for fatigue testing of photochromic, fluorescent or phosphorescent dye/dyes or of a mixture of at least two of them, in which a sample (3) containing photochromic, fluorescent or phosphorescent dye/dyes or a mixture of at least two of them is exposed to a predetermined number of cycles of luminous exposure to an excitation light beam (81), which evokes a color response of the photochromic, fluorescent or phosphorescent dye/dyes or of the mixture of at least two of them in the sample (3). Before and/or during and/or after each predetermined exposure to the excitation light beam (81), the sample (3) containing the photochromic, fluorescent or phosphorescent dye/dyes or of the mixture of at least two of them is exposed at least once to irradiation by an exposure light beam (71), due to which the dye/dyes is/are subject to fatigue loading. Simultaneously, a measuring light beam (41) is introduced to the sample (3) and is reflected from it, whereby the change and/or the course of the change in the characteristics of the measuring light beam (41) reflected from the sample is monitored by a spectrometer (94). From this change and/or the course of the change it is possible to deduce the course of the color response and/or the change in the color response of the particular photochromic, fluorescent or phosphorescent dye/dyes or of the mixture of at least two of them in the sample (3) to the exposure to an excitation light beam (81) and thus it is possible to deduce the fatigue of this photochromic, fluorescent or phosphorescent dye/dyes or of the mixture of at least two of them.