Abstract:
The present invention relates to arrays comprising porous substrates for attachment of nucleic acids, polypeptides, membranes, or other biological or organic materials. In many embodiments, the arrays of the present invention have a flow-through configuration such that washing buffers or samples can access to the porous substrates from at least two sides of the arrays. The present invention also features arrays comprising UV-compatible porous substrates, arrays comprising three-dimensional membranes in sol-gels, and arrays comprising silica-based porous substrates prepared using a low-temperature fusion process.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of the same.
Abstract:
The present invention relates to arrays comprising porous substrates for attachment of nucleic acids, polypeptides, membranes, or other biological or organic materials. In many embodiments, the arrays of the present invention have a flow-through configuration such that washing buffers or samples can access to the porous substrates from at least two sides of the arrays. The present invention also features arrays comprising UV-compatible porous substrates, arrays comprising three-dimensional membranes in sol-gels, and arrays comprising silica-based porous substrates prepared using a low-temperature fusion process.
Abstract:
An aluminum titanate ceramic article having a predominant crystal phase of aluminum titanate and a material composition including aluminum, titanium, silica, an alkaline earth metal (e.g., at least one selected from the group of strontium, calcium, barium, or combinations), and a rare earth metal (e.g., at least one selected from the group consisting of yttrium, lanthanum, and combinations) and methods of making such aluminum titanate bodies are described. An oxide of yttrium metal or lanthanide metals is preferably used as a sintering aid in combination with the other compositional components to enable firing of the resulting green body at a lower heating temperature of less than 1500°C, and more preferably between 1400° 1450°C, with a preferable hold time of less than 8 hours, more preferably of 6 to 8 hours.
Abstract:
The disclosure relates to ceramic-body-forming batch materials comprising at least one pore former and inorganic batch components comprising at least one silica source having a specified particle size distribution, methods of making ceramic bodies using the same, and ceramic bodies made in accordance with said methods. The disclosure additionally relates to methods for reducing pore size variability in ceramic bodies and/or reducing process variability in making ceramic bodies.
Abstract:
A filter apparatus comprises a filter stack including a plurality of porous ceramic plates that are axially spaced from one another to define plurality of axially spaced apart radial flow areas. In one example, the filter stack is mounted within a housing. In further examples, the plurality of porous ceramic plates alternate between a first set of porous ceramic plates that are nested with a second set of porous ceramic plates. In still further examples, at least one of the sides of the porous ceramic plates defines a plurality of radial flutes arranged in a radial array.
Abstract:
Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
Abstract:
Disclosed are cement compositions for applying to honeycomb bodies as a plugging cement composition, segment cement, or even as an after-applied artificial skin or coating. The cement compositions generally comprise an inorganic powder batch mixture; an organic binder; a liquid vehicle; and a gelled inorganic binder. Also disclosed are honeycomb bodies having the disclosed cement compositions applied thereto, and methods for making same.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.