Abstract:
A sweetener and to a method of production thereof is provided. The task of the present invention consists of providing a sucrose-based sweetener, in the production of which the step of separation of the residual sucrose from the isomerization stage is not required, and which has excellent properties for further processing, for example it can be formulated as sweets.
Abstract:
A sweetener and to a method of production thereof is provided. The task of the present invention consists of providing a sucrose-based sweetener, in the production of which the step of separation of the residual sucrose from the isomerization stage is not required, and which has excellent properties for further processing, for example it can be formulated as sweets.
Abstract:
The invention relates to a process for preparing an α,ω-alkanediol comprising the steps of a) reacting an alkanoic acid with an alkanol to give an ester, b) oxidizing at least one terminal carbon atom of the ester by contacting with a whole-cell catalyst, which expresses an alkane hydroxylase, in aqueous solution and in the presence of molecular oxygen, to give an oxidized ester, c) hydrogenating the oxidized ester to form the alkanediol and alkanol, and d) removing the alkanol by distillation, forming a reaction mixture depleted with respect to the alkanol, and recycling the alkanol in step b).
Abstract:
There is provided a microbial cell which is capable of producing at least one higher alcohol, wherein the microbial cell is genetically modified to include an increased expression relative to its wild type cell of at least one acyl-CoA reductase (E11). In particular, there is provided a microbial cell capable of producing at least one higher alcohol, wherein the microbial cell is genetically modified to include an increased expression relative to its wild type cell of at least one acyl-CoA reductase (E11) and wherein the cell is capable of producing a carboxylic acid and/or ester thereof using ethanol-carboxylate fermentation.
Abstract:
A method comprising the steps (a) contacting a hydrocarbon comprising a hydroxyl group with a biological agent having oxygen-dependent and cofactor-dependent carbohydrate oxidase activity in the presence of oxygen and carbohydrate oxidase cofactor, and (b) contacting the hydrocarbon produced in step a) with a biological agent having transaminase activity and a biological agent having cofactor-dependent amino acid dehydrogenase activity in the presence of amino acid dehydrogenase cofactor and the substrate amino acid of the amino acid dehydrogenase.
Abstract:
The present invention relates to a reaction mixture and a method of producing at least one higher alcohol comprising a reaction mixture comprising a mixed culture of a first and a second microorganism in an aqueous medium comprising carbon monoxide gas, wherein the first microorganism is an acetogenic microorganism capable of converting a carbon source to acetate and/or ethanol; and the second microorganism is selected from the group consisting of Clostridium kluyveri, and C. Carboxidivorans capable of converting the acetate and/or ethanol to form an acid; wherein the first microorganism is further capable of converting the acid to the corresponding higher alcohol and the higher alcohol comprises at least 6 carbon atoms.
Abstract:
A method of culturing at least one acetogenic bacteria, includes growing the bacteria in an aqueous medium comprising an amount of cysteine and/or cystine, wherein the cysteine and/or cystine concentration in the medium is maintained at a concentration of less than 0.20 g/L.
Abstract translation:培养至少一种致生菌的方法包括在包含一定量的半胱氨酸和/或胱氨酸的水性介质中培养细菌,其中培养基中的半胱氨酸和/或胱氨酸浓度保持在小于0.20g / L.
Abstract:
At least one fatty acid and/or derivative thereof is produced from a gas containing H2, CO2, and O2 by providing a genetically modified hydrogen oxidizing bacterium in an aqueous medium; and contacting the aqueous medium with the gas containing H2, CO2 and O2 in a weight ratio of 20 to 70 (H2): 10 to 45 (CO2): 5 to 35 (O2); wherein the fatty acid contains at least 5 carbon atoms and wherein the hydrogen oxidizing bacterium is genetically modified relative to the wild type bacterium to increase the expression of enzyme E1 that is capable of catalyzing the conversion of acetyl CoA to acyl ACP via malonyl coA and to increase the expression of enzyme E2 that is capable of catalyzing the conversion of Acyl ACP to the fatty acid.
Abstract:
The invention relates to genetically engineered Candida tropicalis cells, use thereof and a method of production of ω-hydroxycarboxylic acids and ω-hydroxycarboxylic acid esters.
Abstract:
A method for operating wheel electronics of a tire checking system includes providing wheel electronics having a battery-free power supply encompassing at least one rechargeable power storage medium for supplying power to the wheel electronics. The wheel electronics can be operated in a reduced-power transmission mode and a subsequent normal transmission mode. In the modes, data that relate to tire-specific parameters and are determined by the wheel electronics are transmitted to a vehicle-mounted communication device in the form of modulated transmission signals, with less transmission power being used for the transmission signals in the power-reduced transmission mode than in the normal transmission mode. Wheel electronics and a tire checking system are also provided.