Abstract:
In one embodiment, a method comprises receiving, by a router in a network, a router advertisement message on a network link of the network; detecting within the router advertisement message, by the router, an advertised address prefix and an identified router having transmitted the router advertisement message within the network; determining, by the router, whether the identified router is authorized to at least one of advertise itself as a router, or advertise the advertised address prefix on the network link; and selecitvely initiating, by the router, a defensive operation against the identified router based on the router determining the identified router is not authorized to advertise itself as a router, or advertise the advertised address prefix on the network link.
Abstract:
In one embodiment, a mobile router receives a multicast-supported router advertisement message from an attachment mobile router in a mobile ad hoc network, the multicast-supported router advertisement message specifying an attachment prefix and a multicast-capable identifier. The mobile router attaches to the attachment mobile router in response to the multicast-supported router advertisement message and according to a protocol requiring establishment in the mobile ad hoc network of a tree topology having a single multicast clusterhead, and selects a default attachment address within an address space of the attachment prefix. The mobile router receives a multicast request, from an attached node, for receiving a multicast stream, and the mobile router outputs a neighbor advertisement message with multicast extension, to the attachment router, that specifies that access to the multicast stream is requested via the default attachment address.
Abstract:
In one embodiment, a mobile router receives a multicast-supported router advertisement message from an attachment mobile router in a mobile ad hoc network, the multicast-supported router advertisement message specifying an attachment prefix and a multicast-capable identifier. The mobile router attaches to the attachment mobile router in response to the multicast-supported router advertisement message and according to a protocol requiring establishment in the mobile ad hoc network of a tree topology having a single multicast clusterhead, and selects a default attachment address within an address space of the attachment prefix. The mobile router receives a multicast request, from an attached node, for receiving a multicast stream, and the mobile router outputs a neighbor advertisement message with multicast extension, to the attachment router, that specifies that access to the multicast stream is requested via the default attachment address.
Abstract:
Each mobile router in a mobile ad hoc network is configured for identifying routes to nearby nodes that are within a prescribed distance, based on storage of explicit paths specified within routing headers of packets transmitted from a host node to a destination node. Each mobile router also can selectively compress the routing header, based on the storage of the explicit path, resulting in a loose source route type routing header in the packet output from the mobile router. In addition, a routing header of a received packet can be expanded based on the mobile router inserting the explicit path, enabling mobile hosts in the explicit path to forward the packet according to strict source routing. The storage and compression of explicit paths also can be applied to packets specifying reverse routing headers, minimizing the size of the reverse routing headers.
Abstract:
Mobile routers (12) in a tree-based network topology with a single clusterhead (12a) in an ad hoc network (10) establish connectivity based on each attached mobile router sending a neighbor advertisement message (16) to an attachment mobile router via a corresponding egress interface. Any neighbor advertisement message (16) received by a mobile router is used to identify specified network prefixes that are reachable via the source of the neighbor advertisement message. Each attached mobile router outputs to its attachment router another neighbor advertisement message that specifies the network prefix (18) used by the mobile router, and the specified network prefixes from its attached mobile routers. The mobile router also identifies peer mobile routers having the same depth, and selectively shares limited routing information with the peer routers, enabling the mobile router to bypass the clusterhead and reach remote prefixes via the peer routers without burdening the tree.
Abstract:
An autonomous wireless mobile network is established between mobile nodes configured as wireless autonomous robotic mobile access points. Each mobile node includes a mobility platform, an executable routing resource, and a standardized interface. The mobility platform is configured for supplying sensor data from attached physical sensors, and responding to motor commands from the standardized interface. The standardized interface is configured for converting each sensor datum into a corresponding sensor object, and converting received movement directives into the respective motor commands. The executable routing resource is configured for maintaining a database of world objects representing attributes within an infosphere established by the wireless mobile network based on the sensor objects and received network objects. The executable routing resource also is configured for generating the received movement directives and executing network decisions based on periodic evaluation of the world database, and exchanging the world objects with other mobile nodes.
Abstract:
Methods and apparatus for processing registration requests by a Home Agent supporting Mobile IP are disclosed. A registration request is received from each of a plurality of Mobile Nodes, the registration request specifying a care-of address, which may be allocated by the Foreign Agent. A binding is established between each of the plurality of Mobile Nodes and the associated care-of address, each of the plurality of Mobile Nodes being associated with one another. For instance, the plurality of Mobile Nodes may be statically or dynamically assigned the same Home Address. A tunnel is then created between the Home Agent and the care-of address for each of the plurality of Mobile Nodes, thereby enabling a server request to be distributed by the Home Agent to one of the plurality of Mobile Nodes or to a cluster of Mobile Nodes (e.g., associated with the care-of address) via the associated tunnel. For instance, a server request addressed to the Home Address may be forwarded directly to one of the Mobile Nodes assigned that Home Address. Alternatively, when an address such as the care-of address is associated with multiple Mobile Nodes, the Foreign Agent may perform a second level of dispatching such that the server request is dispatched to one of the Mobile Nodes in the cluster.
Abstract:
In one embodiment, a more capable device (MCD) in a computer network may determine one or more a critical destinations (CDs), and may transmit an unsolicited reactive routing route request (RREQ) message to each CD. The MCD may then receive a route reply (RREP) message from the CDs having a route from the MCD to the CD, and may store the route at the MCD. Subsequently, the MCD may transmit a RREP message of its own to one or more less capable devices (LCDs) to provide the route from each respective LCD to the CD via the MCD.
Abstract:
In one embodiment, a method comprises receiving by an agent a request from a network node for generation of a secure IPv6 address for use by the network node, the request including a selected subset of parameters selected by the network node and required for generation of the secure IPv6 address according to a prescribed secure address generation procedure, the selected subset including at least a public key owned by the network node; dynamically generating by the agent at least a second of the parameters required for generation of the secure IPv6 address; generating by the agent the secure IPv6 address based on the selected subset and the second of the parameters required for generation of the secure IPv6 address; and outputting, to the network node, an acknowledgement to the request and that includes the secure IPv6 address, and the parameters required for generation of the secure IPv6 address.
Abstract:
A real-time data transport protocol directed to aggregating multiple packets of a real-time protocol session and transmitting redundant copies of the packets as defined by a sliding window. In particular implementations, a method comprising accessing a plurality of packets of a real-time protocol session; aggregating, over a sliding window, a contiguous sequence of packets in the plurality of packets into real-time data transport packets; and transmitting the real-time data transport packets to a receiving node.