Abstract:
The present invention describes a method of closed loop MIMO communication utilizing implicit or explicit channel state information (CSI) at the transmitter and the receiver. The transmitter performs linear pre-processing (for example, QR decomposition or bi-diagonal decomposition or Jacobi rotations, and/or sporadic SVDs) on a channel matrix, and the receiver mitigates the mutual interference between the streams by performing MMSE processing on the received signals. The MMSE matrix is computed with respect to the processed channel that may estimated by the receiver through preprocessed pilot signals. The transmitters preprocessing is of much lesser cost and complexity than full SVD.
Abstract:
A method and system for GPS (Geographical Positioning System) synchronization of a femtocell, as defined in the application, in a wireless telecommunications network, the system including a Base Transceiver Station (a "sync-BTS") for transmitting synchronization signals, a module for GPS synchronization coupled to the sync-BTS, at least one femtocell, and a processor in each femtocell for performing time and frequency synchronization on the sync-BTS over an air interface.
Abstract:
A method and point-to-point link for providing point-to-point wireless communication (34)~between a first (32')-and second node (32) forming a link, the method including providing multiple concurrent transmissions from multiple antennas (20)in an antenna array (20) arrangement in the first node (10), controlling beam patterns of the antennas (20) to manage deployment interference, and periodically allocating 1 to 3 MIMO (Multiple In Multiple Out) streams to different antennas (20) in the antenna arrangement
Abstract:
A method of using pilot signals in a wireless communication network including encoding pilot signals, and transmitting the encoded pilot signals over an in-band backhaul link between two nodes in the network. Preferably, the pilot signals are encoded with a CDMA codeword associated with a link. The pilot signals can be decoded to permit estimation of a channel and interference attributable to each link.
Abstract:
A backhaul network for a mobile wireless network including a plurality of nodes forming links, the links utilizing a 1:n frequency re-use scheme in backhaul communication, where n equals 2 to about 16, wherein each link communicates over a different portion of an entire bandwidth of the network.
Abstract:
A method and system for providing wireless backhaul in a wireless radio access network having an overall allocated access bandwidth for access communication, the system including a radio access base station designed for out-of- band backhaul, the base station including an access transceiver communicating over an allocated frequency channel within the overall allocated access bandwidth, and an in-band backhaul unit coupled to the access base station including means for in-band communication of backhaul of the access base station.
Abstract:
A mobile broadband wireless network including at least two pairs of nodes arranged in a cluster, each pair coupled to form a link for wireless communication; each node including: an RF transceiver with associated modem; an antenna array arrangement, each antenna having a beam pattern selected to improve quality of transmission, coupled to the modem and arranged for multiple concurrent transmissions; a controller for controlling the transceiver, modem and antenna array arrangement for providing point to point communication; the controller including means for allocating MIMO streams and modulation to different antennas in the antenna array arrangement; and at least one interference mitigation mechanism implemented by the controller to minimize interference within the cluster during multiple concurrent transmissions, and a method of wireless communication.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may select, from a set of demodulation reference signal (DMRS) configurations, a recommended DMRS configuration for a downlink communication, the recommended DMRS configuration associated with a set of DMRS parameters; and transmit an indication of the recommended DMRS configuration. Numerous other aspects are provided.
Abstract:
A WiMAX network and communication method, the network including a plurality of WiMAX nodes (Fig.1, 12) deployed in micro or pico cells for providing access service to a plurality of mobile subscribers, a plurality of these nodes being arranged in a cluster (Fig.), 14), one of the nodes in each cluster being a feeder node coupled to a core network, the nodes in each cluster being coupled for multi-hop transmission to the feeder node. According to a preferred embodiment, each node includes a transceiver with associated modem, an antenna arrangement coupled to the modem and arranged for multiple concurrent transmissions, and a MAC controller for controlling the transceiver, modem and antenna arrangement for providing both access and backhaul communication.
Abstract:
A mobile broadband wireless network including at least two pairs of nodes arranged in a cluster, each pair coupled to form a link for wireless communication; each node including: an RF transceiver with associated modem; an antenna array arrangement, each antenna having a beam pattern selected to improve quality of transmission, coupled to the modem and arranged for multiple concurrent transmissions; a controller for controlling the transceiver, modem and antenna array arrangement for providing point to point communication; the controller including means for allocating MIMO streams and modulation to different antennas in the antenna array arrangement; and at least one interference mitigation mechanism implemented by the controller to minimize interference within the cluster during multiple concurrent transmissions, and a method of wireless communication.