Abstract:
Generally, this disclosure provides apparatus and methods for improved signaling of User Equipment (UE) assistance information in a wireless network. The UE device may include a processing circuit configured to generate an assistance information message including a power preference indicator (PPI) and mobility state information (MSI), the PPI and the MSI associated with the UE; a signal generation module configured to generate a Medium Access Control (MAC) layer Control Element (CE) signal, the MAC CE signal including the assistance information message; and a transmitter circuit configured to transmit the MAC CE signal to an evolved Node B (eNB) of a wireless network associated with the UE, the MAC CE signal transmitted on an uplink shared channel (UL-SCH). The assistance information message may also be generated as a Radio Resource Control (RRC) message and transmitted on an uplink dedicated control channel (UL-DCCH).
Abstract:
Embodiments of the present disclosure describe techniques and configurations for managing communications in a radio access network. An apparatus may include computer-readable media having instructions and one or more processors coupled with the computer-readable media and configured to execute the instructions to measure flow context information based on data extracted from an internet protocol (IP) data flow between a user equipment (UE) and a network entity, and provide the measured flow context information to the UE to facilitate management of one or more IP data flows by the UE. The management of the IP data flow may include selecting a radio access network from one or more radio access networks available for communicating the IP data flow between the UE and the network entity, based at least in part on the provided flow context information. Other embodiments may be described and/or claimed.
Abstract:
A technology for a user equipment (UE) in a multiple radio access technology (multi-RAT) heterogeneous network (HetNet) that is operable to provide node-selection measurement information to a central controller. Node-selection measurement information can be determined at the UE for a plurality of nodes in the multi-RAT HetNet. The node-selection measurement information can be communicated from the UE to the central controller. A multi-RAT HetNet node grouping assignment can be receive for the UE from the central controller based on the node-selection measurement information.
Abstract:
Technology for communicating a discontinuous reception (DRX) reconfiguration is disclosed. In one method, a preferred power consumption configuration message is received, at an evolved node B (eNB) from a user equipment. The preferred power consumption configuration message may be a one-bit message using a first Boolean value to indicate a preferred power consumption configuration. A DRX reconfiguration request message may be received, from the UE, to reconfigure a DRX configuration of the UE to reduce a power consumption level of the UE. The DRX reconfiguration request message may be the one-bit message using a second Boolean value to indicate a DRX reconfiguration. The eNB may determine to reconfigure the DRX configuration of the UE based on the DRX reconfiguration request message. In addition, the eNB may perform the DRX reconfiguration at the UE by adjusting one or more parameters of the DRX configuration.
Abstract:
A method and system for reducing signaling overhead during radio resource control (RRC) state transitions is disclosed. The method can include a first wireless device saving a selected RRC parameter in a memory. The selected RRC parameter can be identified based on a low frequency in which the selected RRC parameter changes. The first wireless device can set an RRC resource parameter retention timer to count a retention time duration for using the selected RRC parameter saved in the memory. The first wireless device can receive a reduced RRC connection message from a second wireless device. The reduced RRC connection message excludes the selected RRC parameter. The first wireless device can use the selected RRC parameter saved in the memory for the RRC parameter excluded in the reduced RRC connection message when the RRC resource parameter retention timer is not expired. The selected RRC parameter can be used in a RRC connection protocol.
Abstract:
In embodiments, a user equipment (UE) may transmit, to an evolved Node B (eNB), a background indicator that the UE is in a background mode running one or more background applications and no active applications. The eNB may receive background indicators from a plurality of UEs, and may bundle the background-mode UEs into one scheduling request (SR) allocation block. The individual UEs may be assigned different resource elements within the block on which to transmit an SR indicator (e.g., if the UE has data to send to the eNB). The eNB may lengthen the period between SR allocations for the background-mode UEs compared with active-mode UEs. In some embodiments, the UE may exclusively use the assigned SR allocation instead of a random access channel to notify the eNB that the UE has data to send.
Abstract:
Embodiments of user equipment (UE) and methods for application-agnostic discontinuous reception (DRX) triggering are generally described herein. In some embodiments, a UE is configured to monitor buffer status history and traffic activity history, and trigger DRX mode activation based on the buffer status and the traffic activity history. In some embodiments, the UE may determine a probability, based on the buffer status history and the traffic activity history, that a level of traffic activity that cannot be handled during DRX mode would occur. In these embodiments, the UE may trigger DRX mode activation when the probability is below a threshold.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for managing state transitions of communication circuitries in wireless networks. Embodiments manage radio resource control (RRC) state transitions and/or discontinuous reception (DRX) state transitions. Other embodiments may be described and/or claimed.
Abstract:
Techniques to control paging for fixed devices are described. An apparatus may comprise a processor circuit, a device identifier component arranged for execution by the processor circuit to determine whether a device is a fixed or mobile device, and a paging component arranged for execution by the processor circuit to generate one or more control directives to modify paging parameters when the device is a fixed device. Other embodiments are described and claimed.
Abstract:
Techniques to control paging for fixed devices are described. An apparatus may comprise a processor circuit, a device identifier component arranged for execution by the processor circuit to determine whether a device is a fixed or mobile device, and a paging component arranged for execution by the processor circuit to generate one or more control directives to modify paging parameters when the device is a fixed device. Other embodiments are described and claimed.