Abstract:
An ultrasonic waterjet apparatus (10) has a mobile generator module (20) and a high-pressure water hose (40) for delivering high-pressure water from the mobile generator module (20) to a hand-held gun (50) with a trigger and an ultrasonic nozzle (60). An ultrasonic generator in the mobile generator module (20) transmits high-frequency electrical pulses to a piezoelectric or magnetostrictive transducer (62) which vibrates to modulate a high-pressure waterjet flowing through the nozzle (60). The waterjet exiting the ultrasonic nozzle (60) is pulsed into mini slugs of water, each of which imparts a waterhammer pressure on a target surface. The ultrasonic waterjet apparatus (10) may be used to cut and de-burr materials, to clean and de-coat surfaces, and to break rocks. The ultrasonic waterjet apparatus (10) performs these tasks with much greater efficiency than conventional continuous-flow waterjet systems because of the repetitive waterhammer effect. A nozzle with multiple exit orifices or a rotating nozzle (76) may be provided in lieu of a nozzle with a single exit orifice to render cleaning and de-coating large surfaces more efficient. A water dump valve (27) and controlling solenoid are located in the mobile generator module (20) rather than the gun (50) to make the gun lighter and more ergonomic.
Abstract:
aparelho de eletroerosão para gerar jatos de água potentes de baixa frequência e de cavitação. um aparelho de eletroerosão possui um bocal que inclui uma câmara de descarga que tem uma entrada para receber a água e uma saída. o aparelho tem um primeiro eletrodo que se estende para dentro da câmara de descarga que está ligada eletricamente a um ou mais capacitores de alta tensão. um segundo eletrodo está próximo do primeiro eletrodo para definir um intervalo entre os primeiro e segundo eletrodos. um interruptor faz com que o um ou mais capacitores descarreguem através do intervalo entre os eletrodos para criar uma bolha de plasma que se expande para formar uma onda de choque que se escapa à frente do bocal da bolha de plasma.
Abstract:
A reverse-flow nozzle generates a cavitating and/or pulsed jet of pressurized liquid. The nozzle includes a body having an inlet for receiving a stream of liquid and a main channel through the body extending from the inlet to an outlet. A flow-reversing channel in the nozzle diverts a portion of the liquid from the main channel to a point downstream of a mixing chamber. The channel returns the diverted liquid back into the mixing chamber as a reverse-flow jet relative to a main stream of liquid flowing toward the outlet. This reverse-flow jet interacts with the main stream to generate the cavitating jet that discharges from the outlet. By angling the reverse-flow jet relative to the main stream, a naturally pulsed jet may be generated.
Abstract:
An ultrasonic waterjet apparatus (10) has a mobile generator module (20) and a high-pressure water hose (40) for delivering high-pressure water from the mobile generator module (20) to a hand-held gun (50) with a trigger and an ultrasonic nozzle (60). An ultrasonic generator in the mobile generator module (20) transmits high-frequency electrical pulses to a piezoelectric or magnetostrictive transducer (62) which vibrates to modulate a high-pressure waterjet flowing through the nozzle (60). The waterjet exiting the ultrasonic nozzle (60) is pulsed into mini slugs of water, each of which imparts a waterhammer pressure on a target surface. The ultrasonic waterjet apparatus (10) may be used to cut and de-burr materials, to clean and de-coat surfaces, and to break rocks. The ultrasonic waterjet apparatus (10) performs these tasks with much greater efficiency than conventional continuous-flow waterjet systems because of the repetitive waterhammer effect A nozzle with multiple exit orifices or a rotating nozzle (76) may be provided in lieu of a nozzle with a single exit orifice to render cleaning and de-coating large surfaces more efficient. A water dump valve (27) and controlling solenoid are located in the mobile generator module (20) rather than the gun (50) to make the gun lighter and more ergonomic.
Abstract:
Zařízení (10) pro ultrazvukový vodní paprsekmá mobilní generátorovou jednotku (20) a hadici (40) vysokotlaké vody pro dodávání vysokotlaké vody z mobilní generátorové jednotky (20) do ruční stříkací pistole (50) se spouští (52) a ultrazvukovou tryskou (60). Ultrazvukový generátor (21) mobilní generátorové jednotky (20)vysílá vysokofrekvenční elektrické pulsy do piezoelektrického nebo magnetostrikčního měniče (62), který kmitáním moduluje vysokotlaký vodní paprsek proudící skrze trysku (60). Vodnípaprsek vystupující z ultrazvukové trysky (60)je pulzovaný do vodních broků, z nichž každý předává na cílový povrch hydraulický tlakový ráz. Zařízení (10) pro ultrazvukový vodní paprsek může být použité pro řezání neboodstraňování otřepů materiálu, pro čištění nebo odstraňování povrchových povlaků, a pro rubání horniny. Zařízení (10) pro ultrazvukový vodní paprsek vykonává tyto práce kvůli opakovanému účinku hydraulického rázu s mnohem vyšší efektivitou než běžně používané systémy pro vodní paprsek spojitého proudu. Namísto trysky (60) s jediným výstupním otvoremmůže být pro zajištění mnohem účinnějšího čištění nebo odstraňování povlaků z velkých povrchů použita buď tryska s množstvímvýstupních otvorů nebo rotační tryska (76). Za účelem odlehčení a docílení lepší ergonomie stříkací pistole (50) jsou vypouštěcí ventil (27) vody a ovládací solenoid (28) umístěné, namísto na stříkací pistoli (50), v mobilní generátorové jednotce (20).
Abstract:
An electrodischarge apparatus has a nozzle that includes a discharge chamber that has an inlet for receiving water and an outlet. The apparatus has a first electrode extending into the discharge chamber that is electrically connected to one or more high-voltage capacitors. A second electrode is proximate to the first electrode to define a gap between the first and second electrodes. A switch causes the one or more capacitors to discharge across the gap between the electrodes to create a plasma bubble which expands to form a shockwave that escapes from the nozzle ahead of the plasma bubble.
Abstract:
An integrated liquidjet system capable of stripping, prepping and coating a part includes a cell defining an enclosure, a jig for holding the part inside the cell, an ultrasonic nozzle having an ultrasonic transducer for generating a pulsed liquidjet, a coating particle source for supplying coating particles to the nozzle, a pressurized liquid source for supplying the nozzle with a pressurized liquid to enable the nozzle to generate the pulsed liquidjet to sequentially strip, prep and coat the part, a high-voltage electrode and a ground electrode inside the nozzle for charging the coating particles, and a human-machine interface external to the cell for receiving user commands and for controlling the pulsed liquidjet exiting from the nozzle in response to the user commands.
Abstract:
A landmine-neutralization system has a vehicle including a water supply tank and an electrical power supply and an electro-discharge apparatus. The electro-discharge apparatus includes one or more electro-discharge nozzles each having a discharge chamber that has an inlet for receiving water from the water supply tank and an outlet, a first electrode extending into the discharge chamber and being electrically connected to one or more high-voltage capacitors that are connected to, and chargeable by, the electrical power supply, a second electrode proximate to the first electrode to define a gap between the first and second electrodes and a switch to cause the one or more capacitors to discharge across the gap between the electrodes to create a plasma bubble which expands to form a shockwave that escapes through one or more exit orifices of the one or more nozzles ahead of the plasma bubble to thereby neutralize a landmine.
Abstract:
A method of prepping a cylindrical inner surface of a bore using a high-frequency forced pulsed waterjet apparatus entails generating a pressurized waterjet using a high-pressure water pump, generating a high-frequency signal using a high-frequency signal generator, applying the high-frequency signal to a transducer having a microtip to cause the microtip to vibrate to thereby generate the high-frequency forced pulsed waterjet, and rotating the rotatable ultrasonic nozzle inside the bore to prep the inner cylindrical surface of the bore using the high-frequency forced pulsed waterjets exiting from the angled exit orifices of the rotatable ultrasonic nozzle.