Abstract:
A surface debris removal apparatus comprises a head unit (1), a removable debris reservoir (2), a removable rechargeable power source (6) and a handle (4) incorporating a device operation switch (23). The head unit (1) incorporates two easily removable elongate cylindrical rotating cleaning bars (7) that are driven such that they contra rotate, and are positioned close to one another at the forward region of the head unit (1).
Abstract:
An optical waveguide environmental sensor is provided that is capable of detecting a target gas or liquid in the ambient environment in an advantageously short period of time. The waveguide is preferably in the form of an optical fiber having a cladding that contains a photonic band gap structure which in turn envelopes a light conducting, hollow core portion. The cladding further includes at least one elongated side opening that preferably extends the entire length of the fiber and exposes said hollow core portion to the ambient environment, which provides broad and nearly immediate access of the core portion to gases and liquids in the ambient environment, thereby minimizing sensor response time. The ambient gases or liquids filling the hollow core portion and elongated opening function as a ridge and slab, respectively, of an optical ridge waveguide that effectively supports at least one bound optical mode.
Abstract:
The present invention relates generally to wavelength conversion devices and laser projection systems incorporating the same. According to one embodiment of the present invention, wavelength conversion devices are provided without limitation of their field of use to laser projection systems. For example, the wavelength conversion device may comprise an axial waveguide portion and a pair of lateral planar waveguide portions confined between a pair of relatively low index cladding layers. The effective index of refraction in the axial waveguide portion of the waveguide region and the effective index of refraction in the lateral planar waveguide portions of the waveguide region are established such that the relatively low intensity laterally distributed parasitic light is characterized by a scattering angle ? that is at least as large as the beam divergence angle of the relatively high intensity light propagating in the axial waveguide portion.
Abstract:
An optical waveguide environmental sensor is provided that is capable of detecting a target gas or liquid in the ambient environment in an advantageously short period of time. The waveguide is preferably in the form of an optical fiber having a cladding that contains a photonic band gap structure which in turn envelopes a light conducting, hollow core portion. The cladding further includes at least one elongated side opening that preferably extends the entire length of the fiber and exposes said hollow core portion to the ambient environment, which provides broad and nearly immediate access of the core portion to gases and liquids in the ambient environment, thereby minimizing sensor response time. The ambient gases or liquids filling the hollow core portion and elongated opening function as a ridge and slab, respectively, of an optical ridge waveguide that effectively supports at least one bound optical mode.
Abstract:
A plurality of active gain material (93) is disposed in an active interface portion (44) of a dielectric band-gap cladding confinement region (22) adjacent to a dielectric core (12) of a photonic band-gap crystal fiber (20), wherein during operation, the plurality of active gain material (93) absorbs the pump energy and stores the pump energy as a potential energy storage for stimulation by EM energy in a second guided mode at a second frequency in a second range of frequencies for overlapping with the first guided mode of the core (12) such that the surface defined by an interface between the photonic band-gap cladding (22) and the dielectric core (12) that supports at least one surface mode propagating at that interface (44) overlaps the active interface portion of the dielectric cladding confinement region and a state associated with the dielectric core (12).
Abstract:
The present invention relates generally to a wavelength conversion device (10) and a laser projection system (100) incorporating the same. According to one embodiment of the present invention, the wavelength conversion device is provided to a laser projection system (100). The wavelength conversion device (10) comprises an axial waveguide portion (12A) and a pair of lateral planar waveguide portions (12B) confined between a pair of relatively low index cladding layers (14). The effective index of refraction in the axial waveguide portion (12A) of the waveguide region and the effective index of refraction in the lateral planar waveguide portions (12B) of the waveguide region (12) are established such that the relatively low intensity laterally distributed parasitic light (17) is associated with a scattering angle ? that is at least as large as the beam divergence angle of the relatively high intensity light (15) propagating in the axial waveguide portion (12A).
Abstract:
A surface debris removal apparatus comprises a head unit (1), a removable debris reservoir (2), a removable rechargeable power source (6) and a handle (4) incorporating a device operation switch (23). The head unit (1) incorporates two easily removable elongate cylindrical rotating cleaning bars (7) that are driven such that they contra rotate, and are positioned close to one another at the forward region of the head unit (1).
Abstract:
A light source includes a first waveguide. The first waveguide includes a light emitting material having a first index of refraction and at least one layer is disposed over the light emitting material. The at least one layer has a second index of refraction and the first index of refraction is greater than the second index of refraction. The light source also includes a second waveguide, which is coupled to the first waveguide. The light emitting device also includes a light extraction structure.
Abstract:
The present invention is directed toward photonic band gap optical fibers having low optical loss and low optical nonlinearity. According to one embodiment of the invention, a photonic band gap fiber includes a cladding region formed from a photonic band gap structure, and a core region surrounded by the photonic band gap structure The photonic band gap structure consists of a triangular array of holes embedded in a silica matrix and having a very high air filling factor.The photonic band gap fiber guides the optical energy substantially within the core region with a loss of less than about 300 dB/km. According to another embodiment of the invention, an optical fiber guides optical energy in a mode having a nonlinear index of refraction of less than about 10- 18 cm 2 /W. According to another embodiment of the invention, an optical fiber supports a soliton having a peak power of greater than about 1 MW.
Abstract:
A plurality of active gain material (93) is disposed in an active interface portion (44) of a dielectric band-gap cladding confinement region (22) adjacent to a dielectric core (12) of a photonic band-gap crystal fiber (20), wherein during operation, the plurality of active gain material (93) absorbs the pump energy and stores the pump energy as a potential energy storage for stimulation by EM energy in a second guided mode at a second frequency in a second range of frequencies for overlapping with the first guided mode of the core (12) such that the surface defined by an interface between the photonic band-gap cladding (22) and the dielectric core (12) that supports at least one surface mode propagating at that interface (44) overlaps the active interface portion of the dielectric cladding confinement region and a state associated with the dielectric core (12).