Abstract:
A process is provided for the manufacture of thin walled ceramic structures, particularly conical or near conical shaped structures. The process involves a tape casting technique wherein a green tape is prepared from a colloidal suspension containing a ceramic powder, a binder system, a plasticizer and a solvent. The suspension is cast into a thin sheet and dried to form a pliable tape. The tape is cut into planar, shaped pieces. Non-planar components of the final structure are preformed from the cut planar tape pieces into predetermined three-dimensional shapes. The planar and preformed components are sequentially assembled within a die and compacted under pressure to form a green body. The green body is subjected first, to a burnout cycle to form a brown body, and then sintered to form the unitary, cohesive, thin walled ceramic structure.
Abstract:
A connective medium for use in ball grid arrays for connecting electronic devices to circuit boards comprising high melting point solder alloy spheres (32) coated, by electroplating, with an outer concentric layer of a lower melting point solder alloy (34) of uniform thickness. In a further aspect, a leach barrier (30) is coated on the high melting point solder alloy (32) prior to electroplating the low melting point solder alloy (34) thereto. The leach barrier (30) forms a barrier to prevent the lead from leaching from the high melting point lead solder spheres (32) into the low melting point solder alloy (34) during the reflow heat treatment in the mounting process.
Abstract:
Anti-microbial coatings and method of forming same on medical devices are provided. The coatings are formed by depositing a biocompatible metal by vapour deposition techniques to produce atomic disorder in the coating such that a sustained release of metal ions sufficient to produce an anti-microbial effect is achieved. Preferred deposition conditions to achieve atomic disorder include a lower than normal substrate temperature, and one or more of a higher than normal working gas pressure and a lower than normal angle of incidence of coating flux. Anti-microbial powders formed by mechanical working to produce atomic disorder are also provided. The invention extends to other metal coatings and powders similarly formed so as to provide enhanced solubility.
Abstract:
There is provided a surface alloyed component which comprises a base alloy with a diffusion barrier layer enriched in silicon and chromium being provided adjacent thereto. An enrichment pool layer is created adjacent said diffusion barrier and contains silicon and chromium and optionally titanium or aluminum. A reactive gas treatment may be used to generate a replenishable protective scale on the outermost surface of said component.
Abstract:
Multilayer anti-microbial materials formed to produce an interference colour, and thus an indicator of anti-microbial effect, are provided. The materials include a partly reflective base layer and a partly reflective, partly transmissive top layer balanced to produce an interference colour. The top layer is formed from an anti-microbial metal with atomic disorder. Dissolution or a change in composition of the top layer on contacting an alcohol or electrolyte causes a change in optical path length so as to produce a change in the interference colour of the material. Multilayer, laminated wound dressings are also provided. The dressing includes a first and second layer, and preferably a third layer. The first and third layers are formed of perforated, non-adherent materials and most preferably carry an anti-microbial coating as above. The second layer is sandwiched between the first and third layers and is formed of an absorbent material. At least one of the layers is formed from a plastic material. The layers are laminated together by ultrasonic welds spaced intermittently on the dressing to allow the dressing to be cut to size with delaminating.
Abstract:
An electroluminescent laminate is provided that comprises: a planar phosphor layer (22); a front and a rear planar electrode (14,24) on either side of the phosphor layer; a planar dielectric layer, which is preferably composed of a thick layer (18) and a thin layer (20), between the rear electrode and the phosphor layer, the dielectric layer being formed from sintered ceramic material such that the dielectric layer provides a dielectric strength S which is greater than about 1.0 X 106 V/m and a dielectric constant such that the ratio of the dielectric constant of the dielectric layer to that of the phosphor layer is greater than about 50:1, the dielectric layer having a thickness sufficient to prevent dielectric breakdown during operation as determined by the equation d2 = V/S, wherein d2 is the thickness of the dielectric layer and V is the maximum applied voltage, the dielectric layer forming a surface adjacent the phosphor layer which is sufficiently smooth that the phosphor layer illuminates generally uniformly at a given excitation voltage, and wherein the dielectric layer is either in contact with the phosphor layer or spaced apart from it by at least one additional layer that is itself in contact with the phosphor layer and wherein the layer that is in contact with the phosphor layer is compatible with the phosphor layer.
Abstract:
Anti-microbial coatings and method of forming same on medical devices are provided. The coatings are formed by depositing a biocompatible metal by vapor deposition techniques to produce atomic disorder in the coating such that a sustained release of metal ions sufficient to produce an anti-microbial effect is achieved. Preferred deposition conditions to achieve atomic disorder include a lower than normal substrate temperature, and one or more of a higher than normal working gas pressure and a lower than normal angle of incidence of coating flux. Anti-microbial powders formed by mechanical working to produce atomic disorder are also provided. The invention extends to other metal coatings and powders similarly formed so as to provide enhanced solubility.
Abstract:
An electroluminescent laminate is provided that comprises: a planar phosphor layer (22); a front and a rear planar electrode (14,24) on either side of the phosphor layer; a planar dielectric layer, which is preferably composed of a thick layer (18) and a thin layer (20), between the rear electrode and the phosphor layer, the dielectric layer being formed from sintered ceramic material such that the dielectric layer provides a dielectric strength S which is greater than about 1.0 X 106 V/m and a dielectric constant such that the ratio of the dielectric constant of the dielectric layer to that of the phosphor layer is greater than about 50:1, the dielectric layer having a thickness sufficient to prevent dielectric breakdown during operation as determined by the equation d2 = V/S, wherein d2 is the thickness of the dielectric layer and V is the maximum applied voltage, the dielectric layer forming a surface adjacent the phosphor layer which is sufficiently smooth that the phosphor layer illuminates generally uniformly at a given excitation voltage, and wherein the dielectric layer is either in contact with the phosphor layer or spaced apart from it by at least one additional layer that is itself in contact with the phosphor layer and wherein the layer that is in contact with the phosphor layer is compatible with the phosphor layer.