Abstract:
Disclosed is an ultrasound diagnostic imaging apparatus including an ultrasound probe which outputs a transmission ultrasound wave toward a subject due to a driving signal and which outputs a received signal by receiving a reflection ultrasound wave from the subject, a transmitting unit which makes the ultrasound probe generate the transmission ultrasound wave by outputting each of a first transmission signal, a second transmission signal, a third transmission signal and a fourth transmission signal as the driving signal, and a signal component extraction unit which extracts a higher harmonic component and a difference frequency component by compounding a first received signal, a second received signal, a third received signal and a fourth received signal.
Abstract:
Disclosed is an ultrasound diagnostic imaging apparatus including an ultrasound probe which outputs transmission ultrasound waves toward a subject by a driving signal and which outputs received signals by receiving reflection ultrasound waves from the subject and a transmitting unit which generates the transmission ultrasound waves by the ultrasound probe by outputting the driving signal, and the transmitting unit generates the driving signal of square wave having a waveform in which a standard pulse signal where a pulse cycle is 2 T is combined with two first pulse signals of same polarity having a pulse width A (A
Abstract:
A method for producing an accumulated product of a nano-substance that enables the accumulated product of the nano-substance to be produced at low cost, by a simple process that requires few conditions to be controlled and requires minimal energy, and with good reproducibility. Specifically, a method for producing an accumulated product of a nano-substance, the method including crystallizing a protein in a state where the protein and the nano-substance co-exist within a solvent, thereby accumulating the nano-substance within pores of the protein crystals to obtain the accumulated product of the nano-substance.
Abstract:
Disclosed is an ultrasound diagnostic imaging apparatus including an ultrasound probe which outputs transmission ultrasound waves toward a subject by a driving signal and which outputs received signals by receiving reflection ultrasound waves from the subject and a transmitting unit which generates the transmission ultrasound waves by the ultrasound probe by outputting the driving signal, and the transmitting unit generates the driving signal of square wave having a waveform in which a standard pulse signal where a pulse cycle is 2T is combined with two first pulse signals of same polarity having a pulse width A (A
Abstract:
There is provided a capacitor that has excellent transient response characteristics, can be used as a distributed constant type noise filter, and can be used as a composite component having two functions of a capacitor and a distributed constant type noise filter through further reduction of an ESL of a solid electrolytic capacitor with a solid electrolytic capacitor of which capacitance is easily increased.There are prepared two capacitor element pieces 121 where both ends of an anode body of each of the capacitor element pieces form anode lead-out portions 122 and 122 and both surfaces of a middle portion of the anode body form cathode lead-out portions 123. The two capacitor element pieces 121 and 121 are stacked so that the cathode lead-out portions 123 and 123 overlap with each other and the anode lead-out portions 122 and 122 are substantially orthogonal to each other. Accordingly, a capacitor element 120 is formed. As a mounting board 141, there is prepared a mounting board 141 that includes conductors 144 and 145 and anode terminal portions 142 and a cathode terminal portion 143. The conductors 144 and 145 correspond to anode lead-out portions 122 and 122 and a cathode lead-out portion 123 of the capacitor element, and are formed on an element mounting surface of the mounting board. The anode terminal portions 142 and the cathode terminal portion 143 are formed on a mounting surface of the mounting board. The conductors 144 and 145 are connected to the anode terminal portions 142 and the cathode terminal portion 143. The capacitor element 120 is mounted on the mounting board 141, so that a solid electrolytic capacitor is formed.
Abstract:
According to one embodiment, an elevator group control apparatus performs group control of operations of cars. The apparatus includes a power consumption calculation unit that calculates power consumption when each of the cars is run according to the operation curve on the basis of object data stored in the object data storage unit and an operation curve created by the operation curve creation unit, a distributed waiting controller that sets a car in a waiting state among the cars as a distributed waiting target car and outputs a distributed waiting instruction to move the target car to a distributed waiting floor, and a distribution instruction controller that obtains, from the power consumption calculation unit, power consumption when the distributed waiting target car is moved to the distributed waiting floor and, on the basis of the power consumption, permits or inhibits a distributed waiting instruction output from the distributed waiting controller.
Abstract:
It is possible to improve a diagnostic performance by a dynamic image and in particular, to provide information effective for diagnosis of the lung ventilation function. Provided is a dynamic image capturing system including: a calculation device which calculates a dynamic feature amount according to a plurality of frame images of the dynamic image captured by an imaging device; and a diagnosis console which displays the frame images of the captured dynamic image as a dynamic image display or a still image display on a display screen of a display unit and colors at least one of the frame images with a color in accordance with a calculation result of a feature amount obtained by the calculation device. In the diagnosis of the lung ventilation function, the breast portion of an examinee is dynamically imaged over a plurality of time phases to calculate a feature amount and an estimated ventilation amount at each of the time phases, so that the calculation results are displayed on the display screen.
Abstract:
It is possible to improve a diagnostic performance by a dynamic image and in particular, to provide information effective for diagnosis of the lung ventilation function. Provided is a dynamic image capturing system including: a calculation device which calculates a dynamic feature amount according to a plurality of frame images of the dynamic image captured by an imaging device; and a diagnosis console which displays the frame images of the captured dynamic image as a dynamic image display or a still image display on a display screen of a display unit and colors at least one of the frame images with a color in accordance with a calculation result of a feature amount obtained by the calculation device. In the diagnosis of the lung ventilation function, the breast portion of an examinee is dynamically imaged over a plurality of time phases to calculate a feature amount and an estimated ventilation amount at each of the time phases, so that the calculation results are displayed on the display screen.
Abstract:
A method for decomposing a target nucleic acid polymer, comprising: bonding a probe nucleic acid polymer and a microparticle to form a probe nucleic acid polymer-bonded microparticle, adding a target nucleic acid polymer to the probe nucleic acid polymer contained within the probe nucleic acid polymer-bonded microparticle to form an addition microparticle, and energizing the microparticle contained within the addition microparticle into a high-energy state and then using energy transfer from this high-energy state microparticle to decompose the target nucleic acid polymer.