-
公开(公告)号:CN114990685B
公开(公告)日:2024-06-28
申请号:CN202210640397.5
申请日:2022-06-07
Applicant: 上海应用技术大学
IPC: C25F3/22
Abstract: 本发明涉及表面处理技术领域,具体涉及一种铜电解抛光液及电解抛光方法,包括以下重量份的各组分:磷酸45‑55份;光亮剂4‑5份;整平剂0.5‑1份;纯水30‑50份;包括如下步骤:S1:铜预处理:将待抛光铜材料置于稀酸中超声活化,随后在去离子水中超声清洗;S2:电解抛光:将经预处理的铜材料置于铜电解抛光液中电解抛光;S3:铜后处理:将经电解抛光的铜材料在1号钝化液中一次超声处理,随后在2号钝化液中二次超声处理,最后清洗并烘干。与现有技术相比,本发明实现了无毒无害无污染的铜电解抛光液及电解抛光方法,适用于工业大批量生产,且抛光产品质量高,更加光亮。
-
公开(公告)号:CN114214674B
公开(公告)日:2023-11-24
申请号:CN202111523358.9
申请日:2021-12-13
Applicant: 上海应用技术大学
IPC: C25D3/04 , C25D7/00 , B22D11/059
Abstract: 本发明涉及一种铜制连铸结晶器的镀铬工艺,该镀铬工艺包括以下步骤:(1)取三氧化铬、甲基磺酸钠、氨基磺酸、氧化铈、氧化镧、氧化钇、氟硅酸钠、氟化钠、硫酸镁、2‑羟基吡啶分散于去离子水中,得到混合液,然后经老化得到电镀液;放入电镀液中,以铜制连铸结晶器作为阴极,不溶性材料作为阳极,进行电镀,然后洗涤、吹干,即完成铜制连铸结晶器的镀铬过程。本发明通过预处理确保待镀铬的铜制连铸结晶器表面清洁平整,通过送电操作进行电镀铬,经水洗吹干后即得到镀铬铜制连铸结晶器。与现有技术相比,本发明镀铬的电流效率高,工序较简单,所得镀铬层硬度高,结构致密,有效使用寿命较长。(2)将待镀铬的铜制连铸结晶器以及不溶性材料
-
公开(公告)号:CN113957468B
公开(公告)日:2023-11-24
申请号:CN202110858379.X
申请日:2021-07-28
Applicant: 上海应用技术大学
IPC: C25B11/031 , C25B11/052 , C25B11/061 , C25B11/091 , C25B1/04 , C01G53/11 , C01G51/04
Abstract: 本发明涉及一种Ni3S2@CoO‑NF复合材料及其合成方法与应用,所述方法包括以下步骤:(a)取钴盐、尿素、氨盐分散于水中得到溶液A,将处理过的泡沫镍浸泡于溶液A中,进行水热、干燥和煅烧得到CoO‑NF复合材料;(b)取六水合硝酸镍、硫源分散于水中得到溶液B,再将步骤(a)中得到的CoO‑NF复合材料置于溶液B中进行水热反应,经干燥得到目的产物。该复合材料可用于电催化析氢反应的工作电极,Ni3S2的负载提高了材料与水的接触面积,并且Ni3S2@CoO组成了异质结构,该结构对碱性溶液中的氢中间体表现出优异的吸附能力,提高了材料的析氢性能及稳定性。(56)对比文件许舟峰.MCo2O4@Ni3S2(M=Co,Fe)催化剂的制备及其电催化水氧化性能的研究《.中国优秀硕士学位论文全文数据库 (硕士) 工程科技Ⅰ辑》.2018,(第8期),B014-110.Chunyu Qiu et al..InterfacialEngineering FeOOH/CoO Nanoneedle Arrayfor Efficient Overall Water SplittingDriven by Solar Energy《.Chemistry – AEuropean Journal》.2020,第26卷(第18期),第4120 – 4127页.
-
公开(公告)号:CN113363080B
公开(公告)日:2023-02-10
申请号:CN202110594114.3
申请日:2021-05-28
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种NF@Co‑MOF@NiMoO4复合材料及其制备和应用,该制备方法包括以下步骤:(1)取二甲基咪唑和硝酸钴六水合物分别溶解在水中,搅拌分散均匀使其完全溶解,再混合在一起得到混合溶液一;(2)以泡沫镍作为载体置入混合溶液一中,静置生长得到NF@Co‑MOF;(3)将Na2MoO4·2H2O、Ni(NO3)2·6H2O分散于水中,得到混合溶液二,并以混合溶液二作为电沉积液,以NF@Co‑MOF作为载体,采用一步循环伏安电沉积法制得目标产物。与现有技术相比,本发明制备的复合材料,具有独特的纳米蜂窝状结构,Co‑MOF作为有机金属骨架结构,结构高度多孔且排列良好,能够提供丰富的活性位点以减少扩散长度,充分发挥NiMoO4高比电容的优点;另外制备方法环境友好、制备方法简单易操作,便于大规模工业生产。
-
公开(公告)号:CN113130214B
公开(公告)日:2022-10-14
申请号:CN202110287526.2
申请日:2021-03-17
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种NF@MoO3@NiCo‑LDH复合材料及其制备方法和应用,包括:制备钼酸铵溶液;以钼酸铵溶液作为电沉积液,以泡沫镍作为载体,采用一步电沉积法制得NF@MoO3前驱体,之后将NF@MoO3前驱体在空气氛围中进行退火工艺,得到NF@MoO3;将Ni(NO3)2·6H2O、Co(NO3)3·6H2O、NH4F、尿素加入水中,充分搅拌分散均匀,将溶液转入高压釜中,浸入NF@MoO3,水热反应,冷却,洗涤,干燥,得到NF@MoO3@NiCo‑LDH材料。与现有技术相比,本发明制备的材料具有独特的分层核壳结构,可以提供有效的活性位点,不仅具有MoO3促进电解质的扩散和电子的转移的优点同时具有NiCo‑LDH高比电容的优点,电化学性能良好;制备方法环境友好、制备方法简单易操作,便于大规模工业生产。
-
公开(公告)号:CN111704171B
公开(公告)日:2022-10-14
申请号:CN202010432651.3
申请日:2020-05-20
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种铁酸锰@氮化碳复合材料及其制备方法和应用,所述制备方法具体包括以下步骤:S1:将经过前处理的碳前驱体与氨水进行水热反应,再经冷却、洗涤、离心、干燥,得到C3N4;S2:取硝酸锰、硝酸铁、氟化铵和尿素的水溶液与步骤S1制得的C3N4混合,后进行水热反应,再经冷却、洗涤、离心、干燥,得到铁酸锰@氮化碳复合材料。制得的铁酸锰@氮化碳复合材料可用于超级电容器的电极材料。与现有技术相比,本发明制得的电极材料具有高比电容和优异的氧化还原能力,可直接作为超级电容器的电极材料使用,且制备方法简单,原料无毒无害。
-
公开(公告)号:CN114318392A
公开(公告)日:2022-04-12
申请号:CN202111442986.4
申请日:2021-11-30
Applicant: 上海应用技术大学
IPC: C25B11/031 , C25B11/091 , C25B1/04
Abstract: 本发明涉及氢能源技术领域,尤其是涉及一种MoS2‑NiS2/NF析氢材料及其制备方法与应用。本发明首先将二水合钼酸钠、六水合硝酸镍、乌洛托品溶于去离子水,得到第一混合溶液;然后将第一混合溶液转移至反应釜,以泡沫镍为载体,经水热反应得到MoO2‑Ni(OH)2/NF;最后将MoO2‑Ni(OH)2/NF和硫粉在无氧条件下煅烧,得到MoS2‑NiS2/NF析氢材料。本发明的MoS2‑NiS2/N析氢材料用于电催化析氢反应。与现有技术相比,本发明制备的MoS2‑NiS2/NF析氢材料的原料成本低,制备方式简单,在碱性溶液中析氢效果良好,有望面向工业化发展。
-
公开(公告)号:CN114300273A
公开(公告)日:2022-04-08
申请号:CN202111541034.8
申请日:2021-12-16
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种NiGa‑LDH@ZnCo2O4@NF复合材料及其制备方法与应用,该复合材料采用以下制备方法制备得到:(1)取锌源、钴源、氟化铵、尿素分散于水中,得到溶液A;(2)取泡沫镍加入所得溶液A中,经水热、洗涤、干燥、煅烧得到ZnCo2O4@NF材料;(3)取镍源、镓源、尿素分散于水中,得到溶液B;(4)取ZnCo2O4@NF材料浸泡于溶液B中,然后经水热、洗涤、干燥得到目的产物。本发明复合材料中ZnCo2O4作为活性中心缩短离子扩散长度,大比表面积NiGa‑LDH纳米片提供大量活性位点,NiGa‑LDH纳米片与ZnCo2O4原位生长复合提高材料的电化学性能。与现有技术相比,本发明复合材料能量密度较高,电化学性能较好,可逆性和稳定性较好,可作为超级电容器工作电极,且制备方法简单,环境友好,便于工业化生产。
-
公开(公告)号:CN111710531B
公开(公告)日:2022-04-05
申请号:CN202010431802.3
申请日:2020-05-20
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种Ce‑NiO@Ni‑MOF复合材料及其制备方法和应用,所述制备方法包括以下制备步骤:S1:将镍源、铈源和草酸溶于有机溶剂中,混合均匀后进行水热反应,再经冷却、洗涤、干燥后,得到中间产物;S2:煅烧步骤S1中得到的中间产物,得到Ce‑NiO;S3:将步骤S2中得到的Ce‑NiO加入到1,3,5‑三甲磺酸和DMF的混合溶液中,搅拌均匀后进行水热反应,再经冷却、洗涤、干燥后,得到Ce‑NiO@Ni‑MOF复合材料。与现有技术相比,本发明的Ce‑NiO@Ni‑MOF复合材料具有高固有电导率、高比电容、高导电性以及更好的循环稳定性,制备方法采用的原料无污染,制备过程中产生的溶剂无毒。
-
公开(公告)号:CN110428976B
公开(公告)日:2021-09-28
申请号:CN201910640910.9
申请日:2019-07-16
Applicant: 上海应用技术大学
Abstract: 本发明涉及一种Cu‑Co‑S‑MOF纳米片的制备方法,包括以下步骤:S1:将硝酸钴六水合物溶于去离子水中,得到溶液A,将2‑甲基咪唑溶于去离子水中,得到溶液B,混合溶液A与溶液B,之后加入清洁的泡沫镍进行反应,得到带有Co‑MOF的泡沫镍;S2:将硝酸铜六水合物、硝酸钴六水合物溶解于异丙醇中,溶解后得到混合溶液C,向混合溶液C中加入二硫化碳和五甲基二乙烯三胺,得到混合溶液D;S3:将带有Co‑MOF的泡沫镍加入混合溶液D中,并转移至反应釜中进行水热反应,反应结束后得到Cu‑Co‑S‑MOF纳米片。与现有技术相比,本发明制备方法环境友好、制备方法工序简单,便于大规模生产,获得的Cu‑Co‑S‑MOF纳米片应用于电极材料时可取得较为优异的电化学性能。
-
-
-
-
-
-
-
-
-