基于深度置信神经网络的热连轧带钢头部厚度预测方法

    公开(公告)号:CN112435234A

    公开(公告)日:2021-03-02

    申请号:CN202011319239.7

    申请日:2020-11-23

    Applicant: 东北大学

    Abstract: 本发明提供一种基于深度置信神经网络的热连轧带钢头部厚度预测方法,包括以下步骤:获取热连轧现场的生产数据;将获取的生产数据运用灰色关联分析算法得到影响热连轧带钢头部厚度的影响因素数据;将获取的影响因素数据输入深度置信神经网络预测模型;所述深度置信网络网络预测模型根据输入的影响因素数据输出热连轧带钢头部厚度的预测数值。本发明提供的预测方法预测精度高,模型易维护,同时避免了根据轧制机理建立的预测模型由于在推导过程中存在大量的假设和近似而造成的较大误差的问题,也改善了基于传统单隐层神经网络的预测模型预测精度低、易陷入局部极值的问题,为过程自动化级设定模型的优化提供了良好基础。

    融合轧制机理和深度学习的热连轧带钢头部宽度预测方法

    公开(公告)号:CN113102516B

    公开(公告)日:2022-02-18

    申请号:CN202110243168.5

    申请日:2021-03-05

    Applicant: 东北大学

    Abstract: 本发明提供一种融合轧制机理和深度学习的热连轧带钢头部宽度预测方法,首先获取热连轧现场的生产数据,并运用Pauta准则剔除离群数据得到样本数据;根据轧制宽展的影响因素筛选影响因素数据,然后构建每一机架的轧制机理预测模型,根据影响因素数据计算热连轧带钢头部宽度的预测基准值,构建深度置信神经网络模型预测带钢头部宽度的修正值,最后将带钢头部宽度的预测基准值与预测修正值相加得到带钢头部的测量位置在出口处宽度的最终预测值。本发明融合轧制机理和深度置信神经网络对带钢头部宽度进行预测,改善了基于传统单隐层神经网络的预测模型预测精度低、易陷入局部极值的问题,为过程自动化级设定模型的优化提供了良好基础。

    融合轧制机理和深度学习的热连轧带钢头部宽度预测方法

    公开(公告)号:CN113102516A

    公开(公告)日:2021-07-13

    申请号:CN202110243168.5

    申请日:2021-03-05

    Applicant: 东北大学

    Abstract: 本发明提供一种融合轧制机理和深度学习的热连轧带钢头部宽度预测方法,首先获取热连轧现场的生产数据,并运用Pauta准则剔除离群数据得到样本数据;根据轧制宽展的影响因素筛选影响因素数据,然后构建每一机架的轧制机理预测模型,根据影响因素数据计算热连轧带钢头部宽度的预测基准值,构建深度置信神经网络模型预测带钢头部宽度的修正值,最后将带钢头部宽度的预测基准值与预测修正值相加得到带钢头部的测量位置在出口处宽度的最终预测值。本发明融合轧制机理和深度置信神经网络对带钢头部宽度进行预测,改善了基于传统单隐层神经网络的预测模型预测精度低、易陷入局部极值的问题,为过程自动化级设定模型的优化提供了良好基础。

Patent Agency Ranking