一种基于样本分割的多尺度二叉树高炉故障诊断方法

    公开(公告)号:CN105550426A

    公开(公告)日:2016-05-04

    申请号:CN201510902744.7

    申请日:2015-12-08

    Applicant: 东北大学

    Inventor: 王安娜 沙漠

    CPC classification number: G06F17/5004 G06F2217/76

    Abstract: 本发明一种基于样本分割的多尺度二叉树高炉故障诊断方法,属于高炉故障诊断技术领域,首先采集高炉生产状况和设备运行状态数据,对数据进行检测并对提取的数据采用均值-方差标准化方法进行归一化处理;将高炉故障诊断问题转化成二分类问题进行多分类器设计;利用改进的广义特征值支持向量机寻找到一条分割面,转化为两个二分类问题,并分别去寻找适应每一类故障数据自己的具有局部特性的距离测度矩阵,借助支持向量机设计出两条基于不同尺度的分类超平面;本发明适合高维非线性故障数据的识别,通过对样本数据的分割与多尺度标准衡量样本间的相似度,兼顾被识别数据的全局与局部逻辑结构,降低被识别故障问题复杂度,提升故障诊断的精度。

    一种基于样本分割的多尺度二叉树高炉故障诊断方法

    公开(公告)号:CN105550426B

    公开(公告)日:2018-08-28

    申请号:CN201510902744.7

    申请日:2015-12-08

    Applicant: 东北大学

    Inventor: 王安娜 沙漠

    Abstract: 本发明一种基于样本分割的多尺度二叉树高炉故障诊断方法,属于高炉故障诊断技术领域,首先采集高炉生产状况和设备运行状态数据,对数据进行检测并对提取的数据采用均值‑方差标准化方法进行归一化处理;将高炉故障诊断问题转化成二分类问题进行多分类器设计;利用改进的广义特征值支持向量机寻找到一条分割面,转化为两个二分类问题,并分别去寻找适应每一类故障数据自己的具有局部特性的距离测度矩阵,借助支持向量机设计出两条基于不同尺度的分类超平面;本发明适合高维非线性故障数据的识别,通过对样本数据的分割与多尺度标准衡量样本间的相似度,兼顾被识别数据的全局与局部逻辑结构,降低被识别故障问题复杂度,提升故障诊断的精度。

Patent Agency Ranking