-
公开(公告)号:CN112529248B
公开(公告)日:2024-06-04
申请号:CN202011240138.0
申请日:2020-11-09
Applicant: 北京宇航系统工程研究所
Inventor: 岳梦云 , 刘巧珍 , 范瑞祥 , 胡晓军 , 黄晨 , 夏伟强 , 张素明 , 白冰 , 王晓林 , 韩雨桐 , 王伟 , 徐昊 , 王冠 , 邓新宇 , 王子瑜 , 田玉蓉 , 程大林 , 程兴 , 王晨 , 陶久亮
IPC: G06Q10/04 , G06F16/23 , G06F11/07 , G06N3/0475
Abstract: 本发明公开了一种数据驱动的运载火箭智能飞行天地镜像系统,包括:数据收发模块,用于将接收到的箭上遥测参数存储至平台数据库;同时,将箭上遥测参数发送至故障诊断模块;故障诊断模块,用于根据箭上遥测参数进行故障诊断,将故障信息存储至平台数据库;趋势预测模块,用于根据预测火箭后续的飞行趋势,将飞行趋势预测结果存储至平台数据库;可视化显示模块,用于对从平台数据库获取的箭上遥测参数、故障信息和飞行趋势预测结果予以展示。本发明真实再现了火箭的运行状态,使发射人员能够更好的掌握任务进行状况;同时,充分利用地面的计算资源,能够先于箭上检测出潜在故障并预测后续趋势,必要时人为上行干涉指令。
-
公开(公告)号:CN113885308B
公开(公告)日:2023-10-27
申请号:CN202111227313.7
申请日:2021-10-21
Applicant: 北京宇航系统工程研究所
Inventor: 黄晨 , 常武权 , 荆木春 , 容易 , 张智 , 刘烽 , 顾名坤 , 刘巧珍 , 马利 , 李文清 , 程兴 , 王俊峰 , 王海涛 , 秦曈 , 徐喆垚 , 宋晶 , 王之平 , 岳玮 , 马宗瑞 , 苏小峰 , 钱航 , 杨楠 , 孟庆丰 , 岳晓飞 , 徐珊珊 , 王晓鹏 , 崔赢午 , 韩雨桐 , 郝金杰
IPC: G05B9/03
Abstract: 本发明提出一种载人逃逸飞行器低空风场检测控制系统及控制方法,属于航天发射技术领域,检测控制系统包括地面测试发控设备、故障检测处理子系统、逃逸控制子系统和逃逸系统火工品,地面测试发控设备和故障检测处理子系统与逃逸控制子系统之间通过脱插连接,脱插内包括T供电信号、箭地RS422通讯数据线和B供电信号,T供电信号连接到逃逸控制子系统,箭地RS422通讯数据线同时连接到故障检测处理子系统和逃逸控制子系统,B供电信号连接到故障检测处理子系统,故障检测处理子系统和逃逸控制子系统之间传递指令信号和RS422逃逸参数,本发明同时还提供了控制方法,解决了现有载人逃逸飞行器不能在发射前针对低空风场情况进行调整的问题。
-
公开(公告)号:CN112539678A
公开(公告)日:2021-03-23
申请号:CN202011381982.5
申请日:2020-11-30
Applicant: 北京宇航系统工程研究所
Abstract: 本发明一种运载火箭低温动力系统自动发射控制方法,根据发射日不同时段流程的特点对整个发射流程进行阶段规划。每个阶段按工作内容的独立程度划分为若干项工作,每项工作由独立的自动控制程序控制执行。由于判读数据多,算法复杂,故障检测定位难度大且处置要求高,所以在执行自动发射控制的同时,构建故障诊断的数据处理知识库,对流程中的重要数据进行判读,实现故障快速定位,并自动执行故障处置。
-
公开(公告)号:CN105589403B
公开(公告)日:2018-04-10
申请号:CN201610080917.6
申请日:2016-02-04
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G05B19/05
Abstract: 本发明涉及基于高速采集数据的配气台增压切换控制方法,首次在动力测控系统中采用射前增压模式,首先进行前端压力参数的接收,接着经过数据清洗、平滑滤波、压力带阈值判断和三取二决策,直接得到地面配气台的增压阀通断信号,并通过动力继电器机柜带动地面配气台的增压阀动作,实现了数据传输处理的实时性,消除了前后端网络故障的影响;本发明方法融合了前端自闭环增压控制(射前增压)、后端遥测增压控制(手动增压)以及后端地测增压控制(测试增压)三种模式,在极大降低增压控制对网络依赖性的同时,通过多模式切换的方式,满足了多种故障模式下对低温运载火箭可靠增压的系统需求,具有极高的先进性和实用价值。
-
公开(公告)号:CN107733684A
公开(公告)日:2018-02-23
申请号:CN201710770974.1
申请日:2017-08-31
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及一种基于龙芯处理器的多控制器计算冗余集群,包括多台控制器、交换机和共享存储空间;从控制器对所有主控制器进行监控,实时备份主控制器的工作内容及状态;控制器向外发送心跳报文,并获得其他控制器的心跳报文,判断其他控制器工作状态;当失效的控制器为主控制器,则其他未失效控制器将主控制器识别为故障,其他未失效控制器中优先级最高的控制器将自身切换为主控制器;如果失效的控制器为从控制器,则将该失效控制器识别为故障;根据实际需要确定主机和备机的数量,本发明具有系统层面的热备功能,当主计算机故障时,能够自动将服务迁到备份计算机上,备份计算机实时监控主计算机的工作状态,保证了切换的实时性,减少数据丢失。
-
公开(公告)号:CN107390741A
公开(公告)日:2017-11-24
申请号:CN201710637380.3
申请日:2017-07-31
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G05D23/20
CPC classification number: G05D23/20
Abstract: 一种温度控制方法,用于完成多路温度测量数据的判断,同时剔除不正常数据、筛选最高温度和最低温度、进行温度数据判断、上报状态信息、输出加热控制指令,实现由温度测量到加热控制的闭环管理。所述温度控制方法采用温度控制系统实现,温度控制系统包括温度控制器、温度传感器网络、加热器网络和电源,其中温度控制器包括测温输入模块、CPU模块、加热器控制模块和电源转换模块;温度控制器模块变换、采集、判断温度数据以及采集加热器网络所有工作状态信息,产生加热器控制指令,控制加热器供电通路的接通和断开,实现温度闭环控制。
-
公开(公告)号:CN105589403A
公开(公告)日:2016-05-18
申请号:CN201610080917.6
申请日:2016-02-04
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G05B19/05
CPC classification number: G05B19/058 , G05B2219/14059
Abstract: 本发明涉及基于高速采集数据的配气台增压切换控制方法,首次在动力测控系统中采用射前增压模式,首先进行前端压力参数的接收,接着经过数据清洗、平滑滤波、压力带阈值判断和三取二决策,直接得到地面配气台的增压阀通断信号,并通过动力继电器机柜带动地面配气台的增压阀动作,实现了数据传输处理的实时性,消除了前后端网络故障的影响;本发明方法融合了前端自闭环增压控制(射前增压)、后端遥测增压控制(手动增压)以及后端地测增压控制(测试增压)三种模式,在极大降低增压控制对网络依赖性的同时,通过多模式切换的方式,满足了多种故障模式下对低温运载火箭可靠增压的系统需求,具有极高的先进性和实用价值。
-
公开(公告)号:CN112539678B
公开(公告)日:2022-12-09
申请号:CN202011381982.5
申请日:2020-11-30
Applicant: 北京宇航系统工程研究所
Abstract: 本发明一种运载火箭低温动力系统自动发射控制方法,根据发射日不同时段流程的特点对整个发射流程进行阶段规划。每个阶段按工作内容的独立程度划分为若干项工作,每项工作由独立的自动控制程序控制执行。由于判读数据多,算法复杂,故障检测定位难度大且处置要求高,所以在执行自动发射控制的同时,构建故障诊断的数据处理知识库,对流程中的重要数据进行判读,实现故障快速定位,并自动执行故障处置。
-
公开(公告)号:CN113945874A
公开(公告)日:2022-01-18
申请号:CN202111005176.2
申请日:2021-08-30
Applicant: 北京宇航系统工程研究所
Abstract: 本发明公开了一种用于运载火箭电磁阀极性识别的可视化无线监测方法,该方法包括如下步骤:在运载火箭各部段的电磁阀的表面设置极性识别无线传感器,将极性识别无线传感器分别与电磁阀状态阵列指示灯板和极性测试监控微机相连接;数据处理单元根据电磁阀动作磁场电压值和电磁阀动作磁场电压基准阈值判断电磁阀动作状态,数据处理单元将电磁阀动作状态过无线发送单元发送给电磁阀状态阵列指示灯板和极性测试监控微机。本发明有效解决人工判断准确度低、易损伤产品、部署及撤收繁琐等问题,提高测试效率,保证极性测试数据的可追溯性。
-
公开(公告)号:CN105739421A
公开(公告)日:2016-07-06
申请号:CN201610079914.0
申请日:2016-02-04
Applicant: 北京宇航系统工程研究所 , 中国运载火箭技术研究院
IPC: G05B19/05
CPC classification number: G05B19/05 , G05B2219/25314
Abstract: 基于PLC分路程控切换方式的电磁阀节能控制电路,包括控制模块、节能供电电源、非节能供电电源、继电器机柜模块,控制模块接收外部发送的电磁阀加电指令并控制节能供电电源、非节能供电电源工作,接收继电器机柜模块发送的电磁阀状态并送至外部,节能供电电源通过继电器机柜模块对电磁阀进行供电,非节能供电电源通过继电器机柜模块对电磁阀进行供电,继电器机柜模块根据电磁阀加电指令控制节能供电电源、非节能供电电源进行供电,同时将电磁阀状态并送至控制模块。本发明节能控制电路与现有技术相比,没有增加额外的设备或者元器件,同时采用产品化的通用电源设备进行供电,在显著提高节能电磁阀工作可靠性的同时,还降低了成本跟研制风险。
-
-
-
-
-
-
-
-
-