-
公开(公告)号:CN119833122A
公开(公告)日:2025-04-15
申请号:CN202510041745.0
申请日:2025-01-10
Applicant: 南通大学
IPC: G16H50/20 , A61B5/00 , A61B5/055 , G16H50/70 , G06F18/241 , G06N3/049 , G06N3/0464 , G06N3/045 , G06N3/08 , G06F123/02
Abstract: 本发明提供了基于动态脉冲神经网络的脑疾病结构‑功能耦合分析方法,属于智能辅助医疗诊断技术领域,有效解决了现有结构‑功能耦合分析方法在捕捉大脑动态变化、非线性耦合特性以及整合多模态数据方面的不足的技术问题。其技术方案为:首先构建动态脉冲神经网络模型;接着从原始fMRI时间序列中提取脉冲结构连接矩阵;然后从功能脑网络中提取脉冲功能连接矩阵,并将其输入到脉冲耦合池化模块得到脉冲结构‑功能耦合;最后将得到的耦合信息输入到分类层获得疾病识别结果。本发明的有益效果为:本发明的显著优势在于为脑疾病研究提供了全新的分析工具和视角,推动了对脑疾病神经机制的深入理解,并且在临床应用中展现出广泛的应用潜力。
-
公开(公告)号:CN119131443A
公开(公告)日:2024-12-13
申请号:CN202311689485.5
申请日:2023-12-11
Applicant: 南通大学
IPC: G06V10/764 , G06N3/0464 , G06N3/08 , G06V10/25 , G06V10/40 , G06V10/774 , G16H50/20
Abstract: 本发明提供了一种基于元学习的基于元学习的罕见脑部病变辨别方法,属于医学信息智能诊断技术领域,解决了传统的人工智能训练需要大量的临床诊断信息,从数据层面上,部分疾病病患的样本数量无法满足传统神经网络训练的需求的技术问题。其技术方案为:先将脑部核磁共振影像的数据集划分为多个任务,每个任务中都包含支持集和查询集;在预训练任务上将CNN模型进行训练和测试,通过反向传播获得全局最优的初始化参数θ;然后使用新类别数据集中的支持集微调训练好的模型;再采用查询集进行测试,得到对模型进行评估。本发明的有益效果为:利用常见脑部疾病区分的先验经验对罕见疾病生成诊断意见,显著提高了模型的泛化能力。
-
公开(公告)号:CN119108099A
公开(公告)日:2024-12-10
申请号:CN202411191743.1
申请日:2024-08-28
Applicant: 南通大学
IPC: G16H50/20 , A61B5/16 , A61B5/00 , A61B5/055 , G16H50/70 , G06N3/049 , G06N3/0464 , G06N3/045 , G06N3/0455 , G06N3/06 , G06N3/08 , G06F18/241
Abstract: 本发明提供了基于脉冲结构‑功能脑网络耦合的精神疾病识别方法,属于智能辅助医疗诊断技术领域,有效解决了传统精神疾病诊断过程中常被忽略的结构连接与功能连接之间的神经生物学机制的技术问题。其技术方案为:首先从功能磁共振成像和扩散张量成像中提取功能和结构脑网络;接着通过BrainNetCNN提取这两种脑网络的信息特征图;然后构建脉冲耦合神经网络来学习大脑结构‑功能耦合机制,以此得出脉冲结构‑功能耦合;最后将得到的耦合信息输入到分类层获得疾病识别结果,并使用交叉熵损失函数对结果进行训练和优化。本发明的有益效果为:本发明有助于深入理解精神疾病的神经机制,在临床应用中具有广泛应用的前景。
-
公开(公告)号:CN114676298B
公开(公告)日:2024-04-19
申请号:CN202210379210.0
申请日:2022-04-12
Applicant: 南通大学
IPC: G06F16/9035 , G06F16/951 , G06N3/045 , G06N3/08 , G06F18/22
Abstract: 本发明提供了一种基于质量过滤器的缺陷报告标题自动生成方法,属于软件质量保障技术领域。其技术方案为:首先从GitHub上选择高质量开源项目,再对数据集进行数据预处理,训练自动生成模型,当预测新的缺陷报告时,分别基于通过学习低质量缺陷报告特征进行过滤的深度学习模块和通过判断历史数据集中是否存在与新缺陷报告内容相似的数据实现预测的信息检索模块,来协同预测该缺陷报告能否生成高质量标题,若预测能,则通过自动生成模型生成标题,反之则提出警告。本发明的有益效果为:通过使用正则表达式进行数据预处理,提高了数据处理效率和方法的兼容性;通过双模块协同过滤,提高了自动生成模型生成的标题质量与效率。
-
公开(公告)号:CN114491540A
公开(公告)日:2022-05-13
申请号:CN202210161142.0
申请日:2022-02-22
Applicant: 南通大学
Abstract: 本发明提供了一种基于GraphCodeBERT的安全漏洞检测方法,其技术方案为:首先对源代码进行预处理,得到数据流词元、源代码词元和注释词元,作为安全漏洞检测模型的输入,模型采用编码器‑解码器框架,编码器端使用预训练的GraphCodeBERT,解码器端使用双向长短期记忆(BiLSTM)模型作为分类模型,最终输出一个二分类结果,用来判断代码是否包含安全漏洞。本发明的有益效果为:基于函数粒度,将安全漏洞检测问题建模为二分类问题;与传统的词向量方法不同,通过在编码器端考虑数据流信息,使得模型更容易学到漏洞模式。
-
公开(公告)号:CN115130480A
公开(公告)日:2022-09-30
申请号:CN202210405606.8
申请日:2022-04-18
Applicant: 南通大学
IPC: G06F40/58 , G06F40/30 , G06F40/289 , G06F40/211
Abstract: 本发明属于机器翻译质量检测技术领域,公开了一种基于辅助翻译软件和双粒度替换的英中翻译软件测试方法。针对需要测试的一系列英文源句,首先借助辅助翻译软件,通过计算主英中机器翻译软件和辅助英中机器翻译软件的翻译结果间的余弦相似度,识别出错误候选句子。随后对英文源句进行双粒度替换,以生成替换后的英文源句。并基于成分句法分析和依存句法分析,通过对比原始英文源句和替换后的英文源句在主英中机器翻译软件的翻译结果的结构表征来进一步识别出错误候选句子。最后通过分析被归为错误候选句子的英文源句,尝试定位并修复英中翻译软件测试方法的实现代码,以提高英中翻译软件的翻译质量。
-
公开(公告)号:CN114676298A
公开(公告)日:2022-06-28
申请号:CN202210379210.0
申请日:2022-04-12
Applicant: 南通大学
IPC: G06F16/9035 , G06F16/951 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明提供了一种基于质量过滤器的缺陷报告标题自动生成方法,属于软件质量保障技术领域。其技术方案为:首先从GitHub上选择高质量开源项目,再对数据集进行数据预处理,训练自动生成模型,当预测新的缺陷报告时,分别基于通过学习低质量缺陷报告特征进行过滤的深度学习模块和通过判断历史数据集中是否存在与新缺陷报告内容相似的数据实现预测的信息检索模块,来协同预测该缺陷报告能否生成高质量标题,若预测能,则通过自动生成模型生成标题,反之则提出警告。本发明的有益效果为:通过使用正则表达式进行数据预处理,提高了数据处理效率和方法的兼容性;通过双模块协同过滤,提高了自动生成模型生成的标题质量与效率。
-
公开(公告)号:CN119132625B
公开(公告)日:2025-04-29
申请号:CN202311600404.X
申请日:2023-11-27
Applicant: 南通大学
IPC: G16H50/70 , G16H50/20 , G06F16/901 , G06F16/903 , G06F18/2113 , G06F18/214 , G06F18/243 , G06F18/20 , G06N5/01 , G06N20/20
Abstract: 本发明提供了基于结构‑功能脑网络局部耦合模式的精神疾病分类方法,属于医学信息智能诊断技术领域;其技术方案为:对结构脑网络的连接矩阵进行频繁子图挖掘,获得所有的频繁连通子图;通过挖掘出的所有频繁连通子图,计算结构脑网络和功能脑网络之间的耦合系数;再通过五折交叉验证,使用lasso模型对获得的耦合系数进行特征选择;对经过属性约简后获得的耦合系数使用随机森林分类以评估准确性。本发明的有益效果为:本发明可以更好地捕捉结构‑脑网络的关键特征,显著提高了精神疾病分类的准确性和效率,帮助医生为患者制定更有效的治疗计划。
-
公开(公告)号:CN119132625A
公开(公告)日:2024-12-13
申请号:CN202311600404.X
申请日:2023-11-27
Applicant: 南通大学
IPC: G16H50/70 , G16H50/20 , G06F16/901 , G06F16/903 , G06F18/2113 , G06F18/214 , G06F18/243 , G06F18/20 , G06N5/01 , G06N20/20
Abstract: 本发明提供了基于结构‑功能脑网络局部耦合模式的精神疾病分类方法,属于医学信息智能诊断技术领域;其技术方案为:对结构脑网络的连接矩阵进行频繁子图挖掘,获得所有的频繁连通子图;通过挖掘出的所有频繁连通子图,计算结构脑网络和功能脑网络之间的耦合系数;再通过五折交叉验证,使用lasso模型对获得的耦合系数进行特征选择;对经过属性约简后获得的耦合系数使用随机森林分类以评估准确性。本发明的有益效果为:本发明可以更好地捕捉结构‑脑网络的关键特征,显著提高了精神疾病分类的准确性和效率,帮助医生为患者制定更有效的治疗计划。
-
公开(公告)号:CN114491540B
公开(公告)日:2024-09-10
申请号:CN202210161142.0
申请日:2022-02-22
Applicant: 南通大学
IPC: G06F21/56 , G06F21/57 , G06N3/0442
Abstract: 本发明提供了一种基于GraphCodeBERT的安全漏洞检测方法,其技术方案为:首先对源代码进行预处理,得到数据流词元、源代码词元和注释词元,作为安全漏洞检测模型的输入,模型采用编码器‑解码器框架,编码器端使用预训练的GraphCodeBERT,解码器端使用双向长短期记忆(BiLSTM)模型作为分类模型,最终输出一个二分类结果,用来判断代码是否包含安全漏洞。本发明的有益效果为:基于函数粒度,将安全漏洞检测问题建模为二分类问题;与传统的词向量方法不同,通过在编码器端考虑数据流信息,使得模型更容易学到漏洞模式。
-
-
-
-
-
-
-
-
-