-
公开(公告)号:CN113268074A
公开(公告)日:2021-08-17
申请号:CN202110632549.2
申请日:2021-06-07
Applicant: 哈尔滨工程大学
Abstract: 本发明属于无人机飞行控制技术领域,具体涉及一种基于联合优化的无人机航迹规划方法。本发明通过前端飞行状态优化模型获取无人机自身飞行状态的最优估计,大幅度降低了自然干扰因素对传感器数据的误差;通过后端飞行动作优化模型,将实际偏差大的飞行角度调整至预期飞行角度,解决了强化学习决策飞行动作不佳的问题,提高了飞行航迹的可靠性。在实际应用中,对于传感器实时采集飞行状态数据,利用前端飞行状态优化模型实时获得最优飞行状态估计,将其作为已训练TD3模型的输入,得到飞行动作,并利用后端飞行动作优化模型,得到对应的飞行动作偏置,对其进行判决,控制输出优化后的飞行动作,从而实现无人机面对自然干扰影响的实时航迹规划。
-
公开(公告)号:CN118552744B
公开(公告)日:2025-04-29
申请号:CN202410549323.X
申请日:2024-05-06
Applicant: 哈尔滨工程大学
IPC: G06V10/44 , G01S7/02 , G06V10/764 , G06V10/774
Abstract: 本发明属于辐射源信息识别技术领域,具体涉及一种辐射源工作模式识别方法、程序、设备及存储介质。本发明利用余弦度量距离,改进高斯核函数,提升模型对局部特性的提取能力,并结合多项式核函数的全局性能力,构造新的组合核函数,改进SVM模型,提高模型的鲁棒性。本发明设计了倭河马算法,自适应优化SVM模型参数组合,为倭河马赋予警惕属性,引入预警因子,改进倭河马防御时的位置更新方式,增强算法的泛化能力,使得改进SVM模型参数组合随迭代次数不断优化,进而提升改进SVM模型的识别能力,实现了小样本条件下辐射源工作模式识别方法泛化性和准确性的提高。
-
公开(公告)号:CN116859348A
公开(公告)日:2023-10-10
申请号:CN202310702730.5
申请日:2023-06-14
Applicant: 哈尔滨工程大学
Abstract: 本发明公开一种基于马群觅食算法的线性滑变脉冲分选方法和装置,包括以下步骤:步骤S1、获取包含干扰脉冲的线性滑变脉冲序列;步骤S2、对所述序列进行差分运算,估计线性滑变脉冲的首个脉冲重复周期和基本滑变间隔;步骤S3、根据首个脉冲重复周期和基本滑变间隔,将线性滑变脉冲序列映射到平面#imgabs0#步骤S4、随机选取平面#imgabs1#上不重合的两点,建立直线模型并计算内点集;步骤S5、确定平面#imgabs2#上最终内点集NDfinal;步骤S6、根据最终内点集NDfinal,通过马群觅食算法实现线性滑变脉冲的准确分选。采用本发明技术方案,以解决针对分选线性滑变脉冲时脉冲丢失与脉冲干扰导致分选准确率不佳的问题。
-
公开(公告)号:CN109444832B
公开(公告)日:2023-02-14
申请号:CN201811250987.7
申请日:2018-10-25
Applicant: 哈尔滨工程大学
IPC: G01S7/38
Abstract: 本发明属于电子干扰技术领域,具体涉及一种基于多干扰效能值的群智能干扰决策方法;包括飞行器从电磁环境中获取侦测目标信息,利用组网雷达检测概率和定位精度的自适应加权和构建目标函数,通过群智能技术对目标函数寻优,将连续解离散化,同时引入遗传算法交叉思想,最终将生成的干扰策略送至飞行器干扰设备;本发明联合多指标对干扰效果进行评估,将组网雷达的检测概率和定位精度两个评估指标结合作为干扰决策目标函数,有效提高了计算目标函数值的可靠性,进而提升了干扰决策的正确性,同时,本发明结合自适应加权和方法与群智能算法,提高了算法的收敛速度,提高了寻优的适应性,降低了计算复杂度,并且增强了算法的全局搜索能力。
-
公开(公告)号:CN111865452B
公开(公告)日:2022-04-05
申请号:CN202010606879.X
申请日:2020-06-29
Applicant: 哈尔滨工程大学
IPC: H04B17/309 , H04L27/26
Abstract: 本发明属于辐射源信号分离技术领域,具体涉及一种基于自适应细菌觅食的单通道盲源分离方法。本发明针对现有的SCBSS方法存在准确性低和无法在未知源数目情况下进行准确分离的问题,将单通道观测信号进行虚实分解得到两路待分解信号,在源信号数目未知的条件下,利用基于信息论准则的MDL‑AIC组合数目估计方法和基于GDE的数目估计方法对单通道观测信号进行源数目估计,同时采用自适应细菌觅食算法对VMD的参数进行优化,将VMD所需分解层数、惩罚因子依靠人为确定和重建多路信号所需源数目未知的问题转变为复杂目标函数的求解问题。本发明相较于利用VMD的SCBSS方法可以得到更优的参数,解决了现有SCBSS方法准确性低和需要已知源数目的问题,提升此方法准确性。
-
公开(公告)号:CN109444832A
公开(公告)日:2019-03-08
申请号:CN201811250987.7
申请日:2018-10-25
Applicant: 哈尔滨工程大学
IPC: G01S7/38
Abstract: 本发明属于电子干扰技术领域,具体涉及一种基于多干扰效能值的群智能干扰决策方法;包括飞行器从电磁环境中获取侦测目标信息,利用组网雷达检测概率和定位精度的自适应加权和构建目标函数,通过群智能技术对目标函数寻优,将连续解离散化,同时引入遗传算法交叉思想,最终将生成的干扰策略送至飞行器干扰设备;本发明联合多指标对干扰效果进行评估,将组网雷达的检测概率和定位精度两个评估指标结合作为干扰决策目标函数,有效提高了计算目标函数值的可靠性,进而提升了干扰决策的正确性,同时,本发明结合自适应加权和方法与群智能算法,提高了算法的收敛速度,提高了寻优的适应性,降低了计算复杂度,并且增强了算法的全局搜索能力。
-
公开(公告)号:CN115114960B
公开(公告)日:2024-12-31
申请号:CN202210767193.8
申请日:2022-06-30
Applicant: 哈尔滨工程大学
IPC: G06F18/2413 , G06F18/213 , G06F18/214 , G06N3/0464 , G06N3/086 , G06N3/0985 , G06N3/045
Abstract: 本发明属于信号识别技术领域,具体涉及一种基于自适应黑蜘蛛猴算法的辐射源个体识别方法。本发明通过构造类内、类间离差矩阵,设计离差损失,融合四元组和中心聚类损失,使得损失函数的构建更具可靠性;通过设计自适应黑蜘蛛猴算法对损失函数权重寻优,构建改变搜索方向的标志,利用螺旋优化搜索,扩大搜索范围,引入探索和平衡开发因子,使权重随迭代次数改变,减少了权重变化的盲目性,增强了辐射源个体识别方法的泛化性、准确性和适应性。本发明不仅能提高网络收敛速度,增加网络的泛化性和可靠性,还能准确实现辐射源个体识别,具备较好的适用性。
-
公开(公告)号:CN118552744A
公开(公告)日:2024-08-27
申请号:CN202410549323.X
申请日:2024-05-06
Applicant: 哈尔滨工程大学
IPC: G06V10/44 , G01S7/02 , G06V10/764 , G06V10/774
Abstract: 本发明属于辐射源信息识别技术领域,具体涉及一种辐射源工作模式识别方法、程序、设备及存储介质。本发明利用余弦度量距离,改进高斯核函数,提升模型对局部特性的提取能力,并结合多项式核函数的全局性能力,构造新的组合核函数,改进SVM模型,提高模型的鲁棒性。本发明设计了倭河马算法,自适应优化SVM模型参数组合,为倭河马赋予警惕属性,引入预警因子,改进倭河马防御时的位置更新方式,增强算法的泛化能力,使得改进SVM模型参数组合随迭代次数不断优化,进而提升改进SVM模型的识别能力,实现了小样本条件下辐射源工作模式识别方法泛化性和准确性的提高。
-
公开(公告)号:CN113268074B
公开(公告)日:2022-05-13
申请号:CN202110632549.2
申请日:2021-06-07
Applicant: 哈尔滨工程大学
Abstract: 本发明属于无人机飞行控制技术领域,具体涉及一种基于联合优化的无人机航迹规划方法。本发明通过前端飞行状态优化模型获取无人机自身飞行状态的最优估计,大幅度降低了自然干扰因素对传感器数据的误差;通过后端飞行动作优化模型,将实际偏差大的飞行角度调整至预期飞行角度,解决了强化学习决策飞行动作不佳的问题,提高了飞行航迹的可靠性。在实际应用中,对于传感器实时采集飞行状态数据,利用前端飞行状态优化模型实时获得最优飞行状态估计,将其作为已训练TD3模型的输入,得到飞行动作,并利用后端飞行动作优化模型,得到对应的飞行动作偏置,对其进行判决,控制输出优化后的飞行动作,从而实现无人机面对自然干扰影响的实时航迹规划。
-
公开(公告)号:CN113406579A
公开(公告)日:2021-09-17
申请号:CN202110632548.8
申请日:2021-06-07
Applicant: 哈尔滨工程大学
IPC: G01S7/38
Abstract: 本发明属于电子干扰技术领域,具体涉及一种基于深度强化学习的伪装干扰波形生成方法。本发明通过构建深度强化学习探索模型,设计状态空间、动作空间、奖励函数,实现了基于深度强化学习的干扰波形生成,该模型中模拟了较为复杂的动态对抗过程,只需当前雷达状态就可以输出对应的干扰波形,在复杂或未知对抗场景下依然能够做出较为有效的干扰波形决策;通过构建伪装生成网络输出伪装信号,并与深度强化学习的生成的干扰信号叠加,得到带有伪装的干扰波形,使得已经训练完成的雷达智能识别网络误判,避免了干扰波形易被雷达方识别的问题,具有较好的干扰和伪装效果。
-
-
-
-
-
-
-
-
-