-
公开(公告)号:CN116127964A
公开(公告)日:2023-05-16
申请号:CN202211600947.7
申请日:2022-12-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京中科闻歌科技股份有限公司 , 国家计算机网络与信息安全管理中心天津分中心
IPC: G06F40/284 , G06F40/30 , G06F16/35 , H04L9/40 , H04W12/12
Abstract: 本发明公开了一种融合传播关系的诈骗信息的检测方法。该方法包括:获取第一信息组、诈骗账号库以及正常账号库,其中第一信息组中的每一个信息包括文本信息和发信账号;根据诈骗账号库和正常账号库从第一信息组中确定第二信息组,其中第二信息组中的每一个信息的发信账号在诈骗账号库和正常账号库中都不存在;根据第二信息组得到多个目标信息组,其中每一个目标信息组中的第一发信账号与第二发信账号的相似文本信息的数量大于第一阈值;计算每一个目标信息组的诈骗权重值;在目标信息组的诈骗权重值大于第二阈值的情况下,将目标信息组中的每一个文本信息确定为诈骗信息。本发明解决了对大量诈骗信息进行检测时,处理效率低的技术问题。
-
公开(公告)号:CN118349883A
公开(公告)日:2024-07-16
申请号:CN202410345245.1
申请日:2024-03-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/241 , G06F18/214 , G06N3/0455 , G06N3/0442 , G06N3/0464 , G06F21/60
Abstract: 本申请提供一种重要数据的识别方法、装置和电子设备,涉及数据处理技术领域和人工智能技术领域。该方法包括:在识别重要数据时,可以先获取待识别数据集,待识别数据集中包括多个数据和各数据的重要度指标;针对各数据,将数据和数据的重要度指标输入至预设的重要数据识别模型中,得到数据对应的重要度得分;再基于各数据对应的重要度得分,从多个数据中识别重要数据,这样基于重要数据识别模型识别重要数据,与现有技术中基于预设重要度规则识别重要数据相比,不仅可以有效地提高重要数据的识别效率,而且提高了识别结果的准确度。
-
公开(公告)号:CN117312864A
公开(公告)日:2023-12-29
申请号:CN202311618449.X
申请日:2023-11-30
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/214 , G06F18/10 , G06F18/25 , G06F40/284 , G06N3/08 , G06N3/0455 , G06N3/0475
Abstract: 本发明提供一种基于多模态信息的变形词生成模型的训练方法及装置,涉及语言生成技术领域,方法包括:获取变形词语料库,变形词语料库包括的不同初始样本由多模态信息组成;对变形词语料库中不同初始样本的不同类型的语料信息,采用对应类型的预处理方式分别进行预处理,生成大规模语料库;大规模语料库中每个语料样本包括多个语料信息的权重及特征向量,不同的语料信息的权重用于表征不同的语料信息在对应样本中不同的贡献程度;基于大规模语料库中预设数量的语料样本包括的多个语料信息的权重及特征向量,对初始模型进行训练,得到基于多模态信息的变形词生成模型。本发明能够提高变形词生成的精度和准确率。
-
公开(公告)号:CN116644229B
公开(公告)日:2024-01-26
申请号:CN202310545163.7
申请日:2023-05-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F18/214 , G06F18/243
Abstract: 本申请涉及一种推荐信息过度泛娱乐化预测方法、装置及服务器,方法应用于服务器,包括:获取用户个性化推荐场景下的待预测时刻的实时行为数据和第一历史行为数据;对待预测时刻的实时行为数据和第一历史行为数据进行特征提取,获得待输入特征;将待输入特征输入推荐信息过度泛娱乐化预测模型;获取推荐信息过度泛娱乐化预测模型的输出结果,输出结果表征用户待预测时刻是否发生推荐信息过度泛娱乐化。通过上述方式,解决了现在对过度泛娱乐化的信息推荐的预测角度的研究还存在空白的问题。
-
公开(公告)号:CN116644229A
公开(公告)日:2023-08-25
申请号:CN202310545163.7
申请日:2023-05-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F18/214 , G06F18/243
Abstract: 本申请涉及一种推荐信息过度泛娱乐化预测方法、装置及服务器,方法应用于服务器,包括:获取用户个性化推荐场景下的待预测时刻的实时行为数据和第一历史行为数据;对待预测时刻的实时行为数据和第一历史行为数据进行特征提取,获得待输入特征;将待输入特征输入推荐信息过度泛娱乐化预测模型;获取推荐信息过度泛娱乐化预测模型的输出结果,输出结果表征用户待预测时刻是否发生推荐信息过度泛娱乐化。通过上述方式,解决了现在对过度泛娱乐化的信息推荐的预测角度的研究还存在空白的问题。
-
公开(公告)号:CN120068103A
公开(公告)日:2025-05-30
申请号:CN202510091627.0
申请日:2025-01-21
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本申请提供一种政务数据的访问控制方法、装置、设备和存储介质,该方法包括:接收目标对象发送的针对目标政务数据的政务数据访问请求;基于目标政务数据的属性信息,确定目标政务数据对应的重要程度值;属性信息包括敏感度、影响度、时效值和数据整合难度;基于目标对象的身份信息、政务数据访问请求的接收时间和目标政务数据对应的重要程度值,确定访问控制等级;基于访问控制等级对目标政务数据进行加密处理;向目标对象发送政务数据访问响应;政务数据访问响应中包括密文政务数据,密文政务数据用于目标对象进行解密处理,得到目标政务数据。采用本申请的技术方案,在保证政务数据的安全性和隐私性的前提下,实现了政务数据的访问控制。
-
公开(公告)号:CN118869520A
公开(公告)日:2024-10-29
申请号:CN202311587077.9
申请日:2023-11-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/02 , H04L43/062 , H04L47/70
Abstract: 本发明提供一种基于降噪模型的隧道流量关联方法和装置,其中所述方法包括:获取预建立的网络隧道的多个入口节点流和多个出口节点流;其中,所述网络隧道用于客户端访问对应的网络;确定与每个出口节点流对应的至少一个候选入口节点流,将每个所述出口节点流输入至预训练的降噪模型中,以将出口节点流依次进行网络噪声和混淆噪声去除处理,得到映射入口节点流;分别计算所述映射入口节点流与至少一个候选入口节点流的统计距离,根据所述统计距离对所述候选入口节点流进行筛选,将最小的统计距离对应的候选入口节点流作为与所述出口节点流关联的目标入口节点流;通过不同的编码层负责去除不同类型的噪声,可提高关联结果的精度。
-
公开(公告)号:CN118520929A
公开(公告)日:2024-08-20
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN119885253A
公开(公告)日:2025-04-25
申请号:CN202411818233.2
申请日:2024-12-11
Applicant: 国家计算机网络与信息安全管理中心 , 北京邮电大学
IPC: G06F21/62 , G06F21/60 , G06F18/241 , G06F18/20 , G06N3/08
Abstract: 本申请提供一种数据分类方法、装置、设备及存储介质,该方法包括:获取待处理数据;将所述待处理数据输入数据分类模型中,得到分类数据和所述分类数据的类别;所述数据分类模型为深度学习模型;根据所述分类数据的类别,基于自然语言处理技术和预设识别规则处理所述分类数据,确定敏感信息。本申请实现了对数据的精确分类,并能够识别和处理敏感信息,增强了数据安全性。
-
公开(公告)号:CN119884071A
公开(公告)日:2025-04-25
申请号:CN202411818236.6
申请日:2024-12-11
Applicant: 国家计算机网络与信息安全管理中心 , 北京邮电大学
Abstract: 本申请提供一种用于在分布式环境中管理数据库的方法及相关设备。该方法包括:执行数据库实例的探测任务,以探测到目标数据库实例,获取所述目标数据库实例的物理存储位置和配置信息,基于所述物理存储位置和配置信息,获取所述目标数据库实例对应的数据库的第一特征信息,获取预设的数据库中的第二特征信息,确定所述第一特征信息与所述第二特征信息是否匹配,响应于所述第一特征信息和所述第二特征信息匹配,获取所述数据库的类型和版本,以管理所述数据库。通过上述方法能够在分布式的复杂环境中,自动化地识别和定位数据库实例及其存储位置,减少人工干预,提高数据库探测的效率与准确性。
-
-
-
-
-
-
-
-
-