-
公开(公告)号:CN112508256A
公开(公告)日:2021-03-16
申请号:CN202011387991.5
申请日:2020-12-01
Applicant: 安徽大学
Abstract: 本发明提供一种基于众包的用户需求主动预测方法及系统,包括以下步骤:S1:确定参与众包任务的标注者,标注者接收到众包任务并完成任务;S2:根据用户偏好信息构建异质信息网络;S3:生成用户需求数据空间;S4:通过图卷积神经网络分别学习用户和需求对象的表示向量;S5:需求预测。本发明通过众包技术实现用户直接参与信息生产和知识共享,众包标注者反馈的偏好信息更能反映用户的真实需求,结合该信息进行需求预测可以提高结果的准确性;众包模式采集的用户偏好信息丰富了用户的属性特征,且为缺乏历史行为数据的新注册用户进行了属性补全,可以更精确地表征每个用户,从而使推荐结果更具个性化。
-
公开(公告)号:CN112508256B
公开(公告)日:2023-04-14
申请号:CN202011387991.5
申请日:2020-12-01
Applicant: 安徽大学
Abstract: 本发明提供一种基于众包的用户需求主动预测方法及系统,包括以下步骤:S1:确定参与众包任务的标注者,标注者接收到众包任务并完成任务;S2:根据用户偏好信息构建异质信息网络;S3:生成用户需求数据空间;S4:通过图卷积神经网络分别学习用户和需求对象的表示向量;S5:需求预测。本发明通过众包技术实现用户直接参与信息生产和知识共享,众包标注者反馈的偏好信息更能反映用户的真实需求,结合该信息进行需求预测可以提高结果的准确性;众包模式采集的用户偏好信息丰富了用户的属性特征,且为缺乏历史行为数据的新注册用户进行了属性补全,可以更精确地表征每个用户,从而使推荐结果更具个性化。
-