基于平均峭度反卷积网络的故障诊断方法及系统

    公开(公告)号:CN116625678B

    公开(公告)日:2024-09-17

    申请号:CN202310525524.1

    申请日:2023-05-11

    Applicant: 安徽大学

    Abstract: 本申请提供一种基于平均峭度反卷积网络的故障诊断方法及系统,基于平均峭度反卷积网络的故障诊断方法,包括基于自相关函数将每一滤波器的输入信号划分为m段分割信号;利用平均峭度的最大化计算每一所述分割信号的梯度,并利用L‑BFGS算法对每一所述滤波器的权值进行更新;循环梯度计算和权值更新的步骤,直至满足预设条件,输出每一所述滤波器的权值及滤波信号;基于功率谱的数据分析降维输出最大平均峭度层的信号;利用卷积神经网络针对所述最大平均峭度层的信号进行特征提取;利用分类器获取故障诊断和分类,从而可以解决在转速时变的情况下,现有的机械故障诊断方法无法准确提取故障信号,降低了齿轮箱故障诊断和分类的准确性的技术问题。

    基于平均峭度反卷积网络的故障诊断方法及系统

    公开(公告)号:CN116625678A

    公开(公告)日:2023-08-22

    申请号:CN202310525524.1

    申请日:2023-05-11

    Applicant: 安徽大学

    Abstract: 本申请提供一种基于平均峭度反卷积网络的故障诊断方法及系统,基于平均峭度反卷积网络的故障诊断方法,包括基于自相关函数将每一滤波器的输入信号划分为m段分割信号;利用平均峭度的最大化计算每一所述分割信号的梯度,并利用L‑BFGS算法对每一所述滤波器的权值进行更新;循环梯度计算和权值更新的步骤,直至满足预设条件,输出每一所述滤波器的权值及滤波信号;基于功率谱的数据分析降维输出最大平均峭度层的信号;利用卷积神经网络针对所述最大平均峭度层的信号进行特征提取;利用分类器获取故障诊断和分类,从而可以解决在转速时变的情况下,现有的机械故障诊断方法无法准确提取故障信号,降低了齿轮箱故障诊断和分类的准确性的技术问题。

Patent Agency Ranking