-
公开(公告)号:CN117873055A
公开(公告)日:2024-04-12
申请号:CN202311626571.1
申请日:2023-11-30
Applicant: 海南大学
IPC: G05D1/43 , G05D109/30
Abstract: 本发明涉及一种基于PCA‑DQFD的无人水面艇自适应路径跟踪方法、设备及介质,该方法包括:获取无人水面艇的路径跟踪指标集,并采用主成分分析PCA算法提取主体成分;构建DQFD网络模型,将提取出的主体成分作为无人水面艇的状态空间,设置无人水面艇的动作空间,利用总损失函数进行预训练;其中,DQFD网络模型为学习演示的深度Q学习网络模型;基于DQFD网络模型输出的最优路径跟踪策略,迭代优化无人水面艇航行的控制参数,以实现对指定路径的实时自适应跟踪。与现有技术相比,本发明提高了无人水面艇的路径跟踪成功率和航行效率。
-
公开(公告)号:CN116945179A
公开(公告)日:2023-10-27
申请号:CN202310989753.9
申请日:2023-08-08
Applicant: 海南大学
IPC: B25J9/16
Abstract: 本发明涉及一种基于梯度下降和指数衰减的轮式移动机械臂姿态调整方法,方法步骤包括:获取轮式移动机械臂姿的状态参数,将状态参数输入预先构建的加速度层姿态调整模型中;求解加速度层姿态调整模型;根据求解结果实时驱动移动平台的驱动轮和机械臂的关节,使轮式移动机械臂从当前姿态调整到期望的姿态;其中加速度层姿态调整模型基于采用梯度下降公式和指数衰减公式推导二次型性能指标结合移动平台的运动学方程以及轮式移动机械臂的物理极限建立。本发明在加速度层上实现了移动平台和机械臂在不同姿态之间的同时自动调整,避免轮式移动机械臂在执行不同的操作任务时需多次测量移动平台和机械臂姿态的繁琐过程。
-
公开(公告)号:CN118941984A
公开(公告)日:2024-11-12
申请号:CN202410933829.0
申请日:2024-07-12
Applicant: 海南大学
IPC: G06V20/17 , G06V40/10 , G06V10/25 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/048
Abstract: 本发明涉及一种基于高效通道优先注意力的海上目标检测方法,包括:获取待检测的海上图像,并输入预先构建并训练好的海上目标检测模型中,获取海上目标检测结果,海上目标检测模型包括依次连接的主干网络、颈部网络和多尺度自适应空间特征融合检测头;主干网络为改进RepViT主干网络,引入带残差的压缩激励模块和多尺度深度可分离高效通道优先注意力;颈部网络为拥有多种不同尺度特征输出的YOLOv8颈部网络;多尺度自适应空间特征融合检测头根据颈部网络输出的多种不同尺度特征,预测出多个预选框,并从多个预选框中确定最终的目标框和置信度。与现有技术相比,本发明能够有效提高海上目标的检测性能,能减少无人机的搜索时间,可用于海上救援等背景。
-
公开(公告)号:CN117649544A
公开(公告)日:2024-03-05
申请号:CN202311392497.1
申请日:2023-10-24
Applicant: 海南大学
IPC: G06V10/762 , G06V10/774 , G06V10/82 , G06V10/24 , G06V20/10
Abstract: 本发明涉及一种轻量化水上目标检测方法、装置及介质,其中方法包括以下步骤:获取水上目标的图像数据,构建水上目标数据集;构建基于改进YOLOv7的目标检测模型,采用轻量化的线性瓶颈逆残差模块重构特征提取模块,并引入坐标注意力机制替换SE模块,同时,使用SPD结合非跨步卷积层的形式替代YOLOv7中的下采样模块;使用聚类算法对水上目标数据集进行聚类,将聚类后的数据集分配给不同尺度检测头,对目标检测模型进行训练;对训练后的目标检测模型进行结构重参数化;将采集到的图像输入结构重参数化后的目标检测模型,得到目标的位置和类别置信度信息。与现有技术相比,本发明能够在有限计算资源下实现快速精准的水上目标检测。
-
公开(公告)号:CN117593598A
公开(公告)日:2024-02-23
申请号:CN202311403413.X
申请日:2023-10-26
Applicant: 海南大学
IPC: G06V10/771 , G06V10/762 , G06V10/30 , G06N3/088 , G06V10/82
Abstract: 本发明涉及一种基于谱松弛嵌入的无监督特征选择方法、装置及介质,其中方法包括以下步骤:获取用户输入的图像数据集并进行预处理;对数据集中的样本图像矩阵进行滤波降噪;根据样本图像矩阵计算局部拉普拉斯谱,建立基于谱松弛嵌入的向量式无监督特征选择模型;对无监督特征选择模型的多个变量进行迭代学习至收敛;根据迭代学习得到的无监督特征选择模型,计算各个特征对应的评价指标;根据评价指标值,从大到小依次选择预设数量的特征数,完成特征选择。与现有技术相比,本发明具有易于实现、方便快捷、可以根据需要选择所需的数据维度等优点。
-
-
-
-