Abstract:
The present invention relates to a method for detecting a forest fire using spatiotemporal bag-of-features (BoF) and a random forest and, more particularly, to a method for detecting a forest fire using spatiotemporal bag-of-features and a random forest comprising the steps of: (1) whenever a frame of a video sequence is inputted, detecting the difference between the input frame and a previous frame and, if the difference value exceeds a predetermined first threshold, setting the input frame to a key frame; (2) detecting a moving block from the set key frame; (3) extracting a candidate smoke block from the moving block using a smoke color model; (4) generating BoF from the detected candidate smoke block; and (5) performing learning by a random forest with respect to the generated BoF to determine whether the smoke of the candidate smoke block is real. The method proposed by the present invention can set the key frame from the video sequence, extract the candidate smoke block using the non-parametric smoke color model, extract HOG and HOF from the extracted candidate smoke block to generate BoF as spatiotemporal features from the HOG and the HOF, perform learning by the random forest with respect to the generated BoF, thereby enhancing the capability of detecting a forest fire in real time, reducing a false alarm, and accurately detecting smoke caused by the forest fire. [Reference numerals] (AA) Start; (BB) End; (S100) Divide frames forming a video sequence into a plurality of blocks, respectively; (S200) Whenever a frame of the video sequence is inputted, detect the difference between the input frame and a previous frame and, if the difference value exceeds a predetermined first threshold, set the input frame to a key frame; (S300) Detect a moving block from the set key frame; (S400) Extract a candidate smoke block from the moving block using a smoke color model; (S500) Generate bag-of features (BoF) from the detected candidate smoke block; (S600) Perform learning by a random forest with respect to the generated BoF to determine whether the smoke of the candidate smoke block is real
Abstract:
PURPOSE: A drug box area detecting system and a method thereof are provided to easily confirm a loaded box state and to control the box state. CONSTITUTION: An image information extracting unit(31) detects the outline of a box. The image information extracting unit extracts the image information. An image analyzing unit(33) calculates the image information. A box control unit(35) generates the control signal according to a state of the box. The box control unit operates a loading box.
Abstract:
PURPOSE: A method of automatically dividing lumen boundaries in an intravascular ultrasound image using a nonparametric probability model and a smoothing function improves the accuracy of division by extracting only a point of interest. CONSTITUTION: An intravascular ultrasound image is converted into a polar coordinate image (S100). A catheter domain is removed in the converted polar coordinate image (S200). An initial point of interest is extracted from the whole polar coordinate image (S300). A point of interest at lumen boundaries is extracted by filtering the initial point of interest (S400). [Reference numerals] (AA) Start; (BB) End; (S100) Step of converting an intravascular ultrasound image obtained by an intravascular ultrasound image device into a polar coordinate image; (S200) Step of removing a catheter domain in the converted polar coordinate image; (S300) Step of extracting an initial point of interest from the whole polar coordinate image without the catheter domain for finding the position of lumen boundaries; (S400) Step of extracting a point of interest at the lumen boundaries by filtering the extracted initial point of interest; (S500) Step of detecting the lumen boundaries in a continuous curve shape from the extracted discrete point of interest at the lumen boundaries; (S600) Step of reversely converting the polar coordinate image for the detected lumen boundaries into the original coordinate image
Abstract:
본 발명은 비모수적 확률 모델과 스무딩 함수를 이용한 혈관 내 초음파 영상에서 내강 경계면 자동 분할 방법에 관한 것으로서, 보다 구체적으로는 (1) 혈관 내 초음파 영상 장치를 이용하여 획득된 혈관 내 초음파 영상을 극좌표 영상으로 변환하는 단계, (2) 상기 변환된 극좌표 영상에서 도뇨관(catheter) 영역을 제거하는 단계, (3) 상기 도뇨관 영역을 제거한 상기 극좌표 영상 전체로부터 내강 경계면의 위치를 찾기 위한 초기 관심 점을 추출하는 단계, (4) 추출된 상기 초기 관심 점을 필터링하여 내강 경계면 관심 점을 추출하는 단계, 및 (5) 추출된 불연속적인 상기 내강 경계면 관심 점으로부터 연속적인 곡선 형태의 내강 경계면을 검출하는 단계를 포함하는 것을 그 구성상의 특징으로 한다. 본 발명에서 제안하고 있는 비모수적 확률 모델과 스무딩 함수를 이용한 혈관 내 초음파 영상에서 내강 경계면 자동 분할 방법에 따르면, 혈관 내 초음파 영상을 극좌표로 변환한 후 웨이블릿 변환을 적용하여 초기 관심 점을 추출하고, 비모수적 확률 모델과 스무딩 함수를 이용하여 추출된 관심 점 중에서 잡음과 칼슘에 의해 발생되는 점을 제거하면서 내강 경계면에 해당하는 관심 점만을 추출하여 내강 경계면을 분할함으로써 분할 정확도를 향상시켜 내강 경계면을 정확하게 검출할 수 있다.