-
公开(公告)号:KR101129749B1
公开(公告)日:2012-03-26
申请号:KR1020110081893
申请日:2011-08-17
Applicant: 광주대학교산학협력단
Inventor: 오길남
IPC: H04L27/01
CPC classification number: H04L25/03006
Abstract: PURPOSE: An equalizer using a variable step-size algorithm is provided to improve a signal-noise ratio per symbol by reducing a dynamic range of a tap coefficient renewal increment section to be a small range. CONSTITUTION: A step size is updated in state where an estimation error of an equalization algorithm decreases. The step size is converged to 0 in a state where a steady state is operated. The step size is updated with a predetermined equation. An equalizer using a variable step-size algorithm prevents errors in the steady state in blind equalization. The step size is formed to be the largest in initial. The step size is formed to be the smallest in the steady-state. The equalizer using the variable step-size algorithm adopts an algorithm renewing the step size in the open state of an eye pattern. The equalizer using the variable step-size algorithm adopts the algorithm stopping tap coefficient renewal in the steady-state.
Abstract translation: 目的:提供使用可变步长算法的均衡器,通过将抽头系数更新增量部分的动态范围减小到小范围来提高每个符号的信噪比。 构成:在均衡算法的估计误差减小的状态下更新步长。 在运行稳定状态的状态下,台阶大小收敛于0。 用预定方程更新步长。 使用可变步长算法的均衡器可以防止盲均衡中稳态中的错误。 初步形成步长最大。 台阶形状在稳态中最小。 使用可变步长算法的均衡器采用在眼图的打开状态下更新步长的算法。 使用可变步长算法的均衡器采用在稳态下停止抽头系数更新的算法。
-
公开(公告)号:KR101228195B1
公开(公告)日:2013-01-30
申请号:KR1020120009034
申请日:2012-01-30
Applicant: 광주대학교산학협력단
Inventor: 오길남
IPC: H04L27/01
CPC classification number: H04L27/01
Abstract: PURPOSE: An equalizer using convergent constant variable algorithm is provided to improve signal to noise ratio per symbol by reducing a dynamic range of tap coefficient renewal increment section into a small range. CONSTITUTION: A convergent constant forms utmost in an initial state in order to rapidly reach normal state without decline of convergence speed by using convergent constant variable algorithm. In a normal state, a steady state error level improves by forming convergent constant small. A convergent constant updates when the eye pattern is in an open state. In a normal state, a tab coefficient update fall into abeyance. In a blind equalization, a convergent constant updates in a reducing case of error of estimation of an equalization algorithm. The updated convergent constant is corrected from a before-image convergent constant. A correction rate increases according to increase of execution cycle n.
Abstract translation: 目的:提供使用收敛常数可变算法的均衡器,通过将抽头系数更新增量段的动态范围减小到小范围来提高每个符号的信噪比。 构成:收敛常数在初始状态下最大化,以便通过使用收敛常数可变算法快速达到正常状态而不会使收敛速度下降。 在正常状态下,通过形成收敛常数小而提高稳态误差水平。 当眼睛图案处于打开状态时,收敛常数更新。 在正常状态下,制表符系数更新落入暂停状态。 在盲均衡中,在均衡算法的估计误差的减少情况下的收敛常数更新。 从图像前收敛常数校正更新的收敛常数。 校正率根据执行周期n的增加而增加。
-
公开(公告)号:KR101267550B1
公开(公告)日:2013-05-27
申请号:KR1020130015416
申请日:2013-02-13
Applicant: 광주대학교산학협력단
Inventor: 오길남
IPC: H04L27/34
Abstract: PURPOSE: A generalized MAP equalizer having a convergence detection function using variance of a cluster is provided to improve a convergence speed and to determine an optimal operation mode in an error performance point of view. CONSTITUTION: A MAP equalizer acquires a contracted signal point in an initial stage of equalization and estimates a transmission signal using two signal points of an equalizer output signal in a normal state. The MAP equalizer estimates an error by a contracted signal point before reaching the initial convergence by substituting the contracted signal point to a real signal point to improve error performance in the normal state. The MAP equalizer operates in two operation modes estimating an error by the real signal point after reaching the initial convergence. The MAP equalizer operates in one mode of the two modes according to the variance of the cluster.
Abstract translation: 目的:提供具有使用群集方差的收敛检测功能的广义MAP均衡器,以提高收敛速度并确定错误性能观点中的最佳操作模式。 构成:MAP均衡器在均衡的初始阶段获取收缩的信号点,并使用正常状态下的均衡器输出信号的两个信号点来估计发送信号。 MAP均衡器通过将合同信号点替换为真实信号点来估计在达到初始收敛之前的收缩信号点的误差,以改善正常状态下的误差性能。 MAP均衡器在达到初始收敛之后通过实信号点估计误差的两种操作模式操作。 MAP均衡器根据簇的方差在两种模式的一种模式下工作。
-
公开(公告)号:KR101262287B1
公开(公告)日:2013-05-09
申请号:KR1020130015415
申请日:2013-02-13
Applicant: 광주대학교산학협력단
Inventor: 오길남
CPC classification number: H04L27/01 , H04L27/2017 , H04L27/34
Abstract: PURPOSE: An adaptive blind equalizer using a Gaussian two-cluster model is provided to minimize calculation complexity and to increase the reliability of signal estimation. CONSTITUTION: An adaptive blind equalizer using a Gaussian two-cluster model estimates a transmission signal selectively using a Gaussian two-cluster model and a nonlinear estimator. The Gaussian two-cluster model forms a Gaussian cluster based on two signals. The nonlinear estimator has a variable parameter according to average and variance of the Gaussian two-cluster model.
Abstract translation: 目的:提供一种使用高斯双聚类模型的自适应盲均衡器,以最小化计算复杂度并提高信号估计的可靠性。 构成:使用高斯双聚类模型的自适应盲均衡器使用高斯双聚类模型和非线性估计器选择性地估计传输信号。 高斯二聚类模型基于两个信号形成高斯聚类。 非线性估计器具有根据高斯双群模型的平均和方差的可变参数。
-
公开(公告)号:KR101101095B1
公开(公告)日:2012-01-03
申请号:KR1020110081600
申请日:2011-08-17
Applicant: 광주대학교산학협력단
Inventor: 오길남
CPC classification number: H04L25/0307 , H04L2025/0363
Abstract: PURPOSE: An equalizer which uses an alternation adaptive algorithm is provided to improve error performance in a ready state by alternatively performing adaption processes by a DD(Decision Directed) and vsCMA(variable step-size Constant Modulus Algorithm). CONSTITUTION: An initial convergence algorithm and steady state algorithm are operated in order to eliminate ISI(inter-symbol interference) with respect to a received signal. The initial convergence algorithm and steady state algorithm are alternately operated for each algorithm execution cycle. An estimation error is observed in an initial convergence algorithm operation procedure for every execution cycle. A convergence coefficient determining the renewal width of a tap coefficient is renewed according to a reduction of the estimation error. The initial convergence algorithm is corresponded to a CMA(Constant Modulus Algorithm). The steady state algorithm is corresponded to a DD(Decision Directed) algorithm.
Abstract translation: 目的:提供一种使用交替自适应算法的均衡器,通过替代执行由DD(决策导向)和vsCMA(可变步长常数模数算法)进行适应过程来改善就绪状态下的误差性能。 构成:运行初始收敛算法和稳态算法,以消除相对于接收信号的ISI(符号间干扰)。 对于每个算法执行周期,交替地运行初始收敛算法和稳态算法。 在每个执行周期的初始收敛算法操作过程中观察到估计误差。 根据估计误差的减小来更新确定抽头系数的更新宽度的收敛系数。 初始收敛算法对应于CMA(恒模算法)。 稳态算法对应于DD(决策导向)算法。
-
公开(公告)号:KR101101031B1
公开(公告)日:2011-12-29
申请号:KR1020110081598
申请日:2011-08-17
Applicant: 광주대학교산학협력단
Inventor: 오길남
CPC classification number: H04L25/03968 , H04L2025/0363
Abstract: PURPOSE: A concurrent equalizer for being updated with squared error weight-based tap coefficients is provided to rapidly minimize an error by focusing on an initial convergent algorithm and a steady state algorithm depending on states. CONSTITUTION: An initial convergent algorithm and a steady state algorithm are simultaneously operated by an algorithm which eliminates an ISI(InterSymbol Interference) in a received signal. The error signal of the initial convergent algorithm and the error signal of the steady state algorithm are calculated each iteration of each algorithm. A tap coefficient in a corresponding algorithm is updated by being inversely proportional to the square size of each error signal. A convergent constant, which is included in the tap coefficient of the initial convergent algorithm, is updated each iteration of the algorithm based on a moving average over the error signal.
Abstract translation: 目的:提供用于基于平方误差加权抽头系数更新的并发均衡器,以通过关注依赖于状态的初始收敛算法和稳态算法来快速最小化误差。 构成:初始收敛算法和稳态算法由一种消除接收信号中的ISI(InterSymbol干扰)的算法同时运行。 每个算法的每次迭代计算初始收敛算法的误差信号和稳态算法的误差信号。 通过与每个误差信号的平方尺寸成反比来更新相应算法中的抽头系数。 基于误差信号上的移动平均值,在算法的每次迭代中更新包含在初始收敛算法的抽头系数中的收敛常数。
-
-
-
-
-