Abstract:
A fog forecasting system using weather satellite and a fog forecasting method thereof are provided to distinguish fog and low-level clouds by calculating Laplacian about luminance temperature distribution of the determined observation region, thereby increasing the accuracy of fog detection. A fog forecasting system using weather satellite comprises a stationary orbit meteorological satellite detecting he intensity of the near infrared ray and infrared ray radiated from the observation region, which is equipped with an observation sensor for the near infrared ray channel and an observation sensor for the infrared channel; a remote-sensing satellite detecting the sea-surface wind speed of the observation region by employing a sea-surface wind detecting sensor; a receiver of satellite signal received with the detected information from the stationary orbit meteorological satellite and remote-sensing satellite; and an analysis equipment presuming the fog generation region, which is equipped with an operator programmed with analysis algorithm and a memory stored with Laplacian boundary value/sea-surface wind speed of boundary value about luminance temperature difference boundary value/luminance temperature distribution.
Abstract:
PURPOSE: A drag coefficient parameterization device and a method for the same are provided to accurately consider a frictional influence on the surface of an ocean in a weather model and a local weather model. CONSTITUTION: A drag coefficient parameterization method includes the following steps: 10 m wind speed from an observing machine to an ocean observing point, roughness length, and Monin-Obukhov length are detected in a weather information detecting part(S301); a weather verifying part verifies a season on the basis of an inputted date(S302); atmospheric stability is verified by calculating and then by inputting the roughness length and the Monin-Obukhov length in a stability verifying part(S304, S305); and a drag coefficient is calculated(S306). [Reference numerals] (AA) Start; (BB) End; (S301) Detecting 10 m wind speed, roughness length, and Monin-Obukhov length; (S302) Verifying seasons on the basis of dates; (S303) Inputting the roughness length and the Monin-Obukhov length; (S304) Calculating the ratio of the roughness length and the Monin-Obukhov length; (S305) Verifying stability on the basis of the calculated ratio; (S306) Calculating drag coefficient by respectively applying different drag coefficient calculating formulas to verified seasons/stabilities
Abstract:
A method for detecting fog by using the meteorological satellite by the standard deviation criterion, and its system are provided to allow fog to be detect precisely both in the daytime and at night. A method for detecting fog by using the meteorological satellite by the standard deviation criterion comprises the steps of detecting the intensity and distribution profile of the near infrared ray and infrared ray radiated from the whole observation region from the meteorological satellite equipped with a sensor for near infrared ray channel and a sensor for infrared ray channel; receiving the intensity and distribution profile of near infrared ray and infrared ray radiated from the whole observation region from the meteorological satellite by using the receiver of satellite signal; and calculating the standard deviation about the infrared ray brightness temperature distribution of the determined observation region from the received information, and comparing it with the standard deviation boundary value about the infrared ray brightness temperature distribution of the preset fog generation region, thereby determining the region showing the standard deviation lower than the standard deviation boundary value to be the fog generation region.
Abstract:
A method for detecting fog by using the meteorological satellite by the standard deviation criterion, and its system are provided to allow fog to be detect precisely both in the daytime and at night. A method for detecting fog by using the meteorological satellite by the standard deviation criterion comprises the steps of detecting the intensity and distribution profile of the near infrared ray and infrared ray radiated from the whole observation region from the meteorological satellite equipped with a sensor for near infrared ray channel and a sensor for infrared ray channel; receiving the intensity and distribution profile of near infrared ray and infrared ray radiated from the whole observation region from the meteorological satellite by using the receiver of satellite signal; and calculating the standard deviation about the infrared ray brightness temperature distribution of the determined observation region from the received information, and comparing it with the standard deviation boundary value about the infrared ray brightness temperature distribution of the preset fog generation region, thereby determining the region showing the standard deviation lower than the standard deviation boundary value to be the fog generation region.
Abstract:
PURPOSE: A post-treatment system for ocean turbulent flux observation data and a method for the same are provided to improve predictability by using the data for improving the parameterization of atmosphere-ocean interaction in the boundary layer of a weather model and a climate module. CONSTITUTION: A post-treatment method for ocean turbulent flux observation data includes the following steps: the physical errors of ocean turbulent flux are verified according to the rainfall, visibility, and relative humidity of an observation point(S101); the physical errors of the ocean turbulent flux are verified according to the standard deviation of the ocean turbulent flux(S102); data without errors undergoes parallel inspections(S103); and the coordinate axis of a post-treatment system for ocean turbulent flux observation data is changed to a wind blowing direction in order to remove the physical errors from the data(S107). [Reference numerals] (AA) Turbulent flux observation data; (BB,DD,EE) Physical error; (CC) Electric error; (FF) Yes; (GG) No; (HH) Turbulence flux data after post-treatment process; (S101) 0.0 mm or more of rainfall, 2 Km or less of visibility, 85% or more of relative humidity; (S102) Within a range of ± standard deviation calculated for ± 2.5 minutes(total 5 minutes) X 3.5 times; (S103) Parallel inspection; (S104) Two or less of major errors; (S105) Calculating average wind blowing direction for ±15 minutes(total 30 minutes); (S106) Wind blowing direction is more than -135 degrees or less than +135 degrees at a machine installed direction; (S107) Coordinate axis changing process
Abstract:
PURPOSE: A system and a method for evaluating the simulation performance of a global climate model are provided to increase the reliability of climate prediction by reducing the climate prediction uncertainty of the East Asia. CONSTITUTION: A method for evaluating the simulation performance of a global climate model includes the following: climate data are detected from global climate simulation data and global observing data(S201); the signal-to-noise ratio, the empirical orthogonal function, the correlation coefficient, the standard deviation of the climate data are calculated(S202); the empirical orthogonal function of the global observing data is calculated(S203); the correlation coefficient of the empirical orthogonal function of the global observing data is calculated; the correlation coefficient and the standard deviation of the global climate simulation data and the global observing data are calculated to verify the climate simulation capability of a global climate model(S204); and the calculated correlation coefficient is compared with a saved boundary value to select a global climate model with superior simulation performance(S205, S206).
Abstract:
본 발명은 안개와 하층운의 혼합된 날씨 상태에서 안개 지역만을 구별해 내기 위한 기상위성을 이용한 안개 탐지시스템 및 그를 사용한 안개 탐지방법을 제공한다. 이와 같은 안개 탐지시스템 및 그를 사용한 안개 탐지방법은 안개의 표면이 하층운의 표면보다 균질한 분포를 가지는 특성을 이용하여 정해진 관측지역의 휘도온도 분포에 대한 라플라시안을 산출하여 안개와 하층운을 구별할 수 있도록 함으로써 안개 탐지의 정확도가 높아지게 된다. 본 발명에 따른 기상위성을 이용한 안개 탐지시스템은 근적외선 채널용 관측센서와 적외선 채널용 관측센서가 구비되어 정해진 관측지역으로부터 복사되는 근적외선과 적외선의 세기 및 분포상태를 검출하는 정지궤도기상위성과; 해상풍 탐지센서가 구비되어 관측지역의 해상풍 풍속을 검출하는 지구관측위성와; 정지궤도기상위성 및 지구관측위성로부터 검출된 정보를 수신받는 위성신호수신기 및; 안개 탐지를 위한 분석알고리즘이 프로그래밍된 연산기와 정해진 관측지역의 휘도온도차 경계값, 휘도온도 분포에 대한 라플라시안 경계값, 해상풍 풍속 경계값이 저장된 메모리가 구비되어, 위성신호수신기로부터 정해진 관측지역의 근적외선과 적외선의 세기 및 분포상태, 해상풍의 풍속을 입력받아 정해진 관측지역의 휘도온도 분포 및 휘도온도 분포에 대한 라플라시안을 계산하고, 정해진 관측지역의 근적외선과 적외선의 휘도온도차, 휘도온도 분포에 대한 라플라시안, 해상풍 풍속을 연산기에 저장된 휘도온도차 경계값, 휘도온도 분포에 대한 라플라시안 경계값, 해상풍 풍속 경계값과 비교하여 안개발생지역을 추정하는 분석장치를 포함하여 이루어진다. 그리고, 본 발명에 따른 기상위성을 이용한 안개 탐지방법은 근적외선 채널용 관측센서, 적외선 채널용 관측센서, 해상풍 탐지센서를 구비하는 하나 이상의 기상위성으로부터 정해진 관측지역으로부터 복사되는 근적외선과 적외선의 세기 및 분포상태, 정해진 관측지역의 해상풍 풍속을 검출하는 기상정보 검출단계와; 위성신호수신기를 이용하여 기상위성으로부터 정해진 관측지역으로부터 복사되는 근적외선과 적외선의 세기 및 분포상태, 정해진 관측지역의 해상풍 풍속을 수신받는 기상정보 수신단계와; 정해진 관측지역으로부터 복사되는 근적외선과 적외선의 세기 및 분포상태를 입력받아, 정해진 관측지역의 근적외선의 휘도온도와 적외선의 휘도온도를 계산하여 휘도온도차를 산출하여, 이를 정해진 관측지역의 휘도온도차 경계값과 비교하여 휘도온도차 경계값보다 낮은 휘도온도차를 보이는 지역을 안개 또는 하층운 발생지역으로 판단하는 휘도온도차 판단단계와; 정해진 관측지역의 해상풍 풍속을 입력받아, 이를 정해진 관측지역의 해상풍 풍속 경계값과 비교하여 해상풍 풍속 경계값보다 낮은 해상풍 풍속을 보이는 지역을 안개 발생 의심지역으로 판단하는 해상풍 풍속 판단단계와; 휘도온도차 판단단계에서 계산된 정해진 관측지역의 근적외선 휘도온도 분포와 적외선 휘도온도 분포로부터 각각의 휘도온도 분포에 대한 라플라시안을 산출하여, 이를 정해진 관측지역의 휘도온도 분포에 대한 라플라시안과 비교하여 휘도온도 분포에 대한 라플라시안 경계값보다 낮은 라플라시안을 보이는 지역을 최종적으로 안개 발생지역으로 판단하는 라플라시안 판단단계를 포함하여 이루어진다. 안개, 안개, 하층운, 근적외선, 적외선, 휘도온도, 해상풍, 라플라시안